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Abstract

In this thesis I consider some routing problems and exact algorithms to solve them

based on the branch-and-price framework. I consider three variants of the Vehicle

Routing Problem (VRP): the Capacitated Vehicle Routing Problem (CVRP): is

the basic and most studied version of VRP; the Vehicle Routing Problem with Dis-

tribution and Collection (VRPDC): is the variation of the CVRP arising when

the distribution of goods from a depot to a set of customers and the collection of

waste from the customers to the depot must be performed by the same vehicles of

limited capacity and where the customers can be visited in any order; the Capaci-

tated Vehicle Routing Problem with Time Windows (CVRPTW): is the variation

of the capacitated VRP arising when customers must be served within a specified

period during the day.

These Vehicle Rouring Problems are strongly NP -hard; thus I search for exact

solutions in reasonable computing time. Since the computational effort required

by branch-and-price based algorithms is affected mainly by the efficient solution

of the so called pricing subproblem, I devote the main part of the thesis to enlarge

the knowledge on pricing algorithms .

In particular I present some new ideas to improve the known dynamic pro-

gramming algorithms. I experimentally compare different strategies to solve the

subproblem and their effect on the solution of the VRPs.



Chapter 1

Introduction

Whenever we use a telephone, shop at out neighborhood foodstore

or mall, read our mail or fly for business or for pleasure, we are the

beneficiaries of some system that has routed messages, goods or people

from one place to another. [63]

In this chapter I provide the motivation for the study of vehicle routing problems

as well as the purpose of this thesis.

1.1 Motivation

The distribution of goods and data, the collection of waste, the transportation

of people between places and, in general, all transportation systems require the

organization and the planning of sequences of operations performed by vehicles,

trucks, telecommunication networks and transportation media.

Since 1970 transport activity has more than doubled in the European Union:

+185% for the transportation of goods and +145 % for the transportation of people.

Road transport is today dominant over other modes of transport, with a market

share of 45 % for the transportation of goods and of 87 % for passenger transport.

In passenger traffic, it is air transport that has made the most progress since

the sector was opened up to competition in the Nineties. This trend has been

strengthened recently with the development of lowcost airlines.

The European Union, in the Energy & Transportation report 2000-2004, esti-

mated the transportation costs for that period around EUR 210 billions. Trans-

portation sector contributes for up to 10% to the gross domestic product (GDP)

and employs more than 10 millions workers. The prospect of the European Union

is that the demand of goods transportation will increase by 70% between now and

2020 in the EU member states and by 95% in the ten new member states and that

this will raise the transportation costs by EUR 80 billions per year. Nevertheless

2



1. Introduction 3

transportation systems have also environmental costs, social costs and hidden costs

(primarily on life quality). For instance the transportation of goods is responsible

for the 28% of gas emissions in 1998 and this share is likely to increase to 50%

between now and 2010.

For this reason the sequences of operations performed by transportation systems

should be planned in some way to reduce such costs. The sequences, usually called

routes, can be planned in several ways.

• No planning: requests are satisfied by a FIFO policy;

• Planned by transportation experts: decisions are based on expert’s knowl-

edge;

• Planned by computer programs: decisions are taken by optimization algo-

rithms;

• Planned by transportation experts with the aid of computer programs: de-

cisions are taken by experts with a quantitative information given by opti-

mization algorithms.

Each approach has its own benefits and its own costs. The absence of planning is

the quickest way to compute routes and it is costless; by contrast the quality of the

computed routes is poor and the transportation costs are consequently high. The

planning based on human knowledge is generally costly, it takes a large amount of

time to be carried out, it can be performed only on a small amount of transportation

requests and generally the quality of the solution is poor but it can be very adaptive

to data changes and it is very flexible to consider several objectives at the same

time. The design of routes made by computer algorithms is typically fast and

cheap. It provides low cost solutions and it is able to deal with large problems but

it is not able to detect errors in the input data and typically it is not devised to take

into account several objectives at the same time. The use of a computer program

by human experts is useful when several solutions should be evaluated. This type of

use of computer programs is commonly known as Decision Support System (DSS).

It can be implemented when very fast computer programs are available. Using

a DSS the quantitative information given by computer programs can be used by

human experts who are able to evaluate the computed routes using their own

knowledge on the problem.
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The last two approach are the challenging ones for researcher who are asked

to develop faster and accurate algorithms used in DSSs. At the same time re-

searcher are asked to develop exact algorithms for routing problems which are able

to provide a certificate of optimality of the computed solution.

To develop effective algorithms for transportation planning, it is necessary to

describe the problem in a formal way: a mathematical model. The model must

capture the significant aspects of the transportation problem, representing them

in terms of decision variables, constraints and cost functions. The first attempt to

define mathematical models of transportation planning problems dates back to the

seminal paper of Dantzig and Ramser [31] published more than 40 years ago. It

considers the routing problem associated with a gasoline delivery and provides the

first formulation of the general Vehicle Routing Problem (VRP). In the 60’s Clarke

and Wright [20] presented the first greedy heuristic approach to the problem. Their

algorithm starts from an infeasible solution made of 1-customer trip and iteratively

combines routes maximizing the savings.

Since then many progresses have been made both on the side of enriching the

models and on the side of improving the algorithms on the vehicle routing problem.

The solution of a vehicle routing problem concerns the service of a set of cus-

tomers, by a set of vehicles of a given capacity which are located in one or more

depots. The vehicles are operated by crews and they travel along a given road

network. The solution of a VRP is to determine a set of feasible routes whose

global transportation cost is minimized and such that all customers requirements

are satisfied; moreover each route is performed by a single vehicle that starts and

ends its travel at its own depot.

Typically the road network is described by a graph, whose arcs (or edges) rep-

resent the streets and whose nodes represent the depot, the customers and the

junctions. Generally with each arc is associated a cost, that typically represents

the length, and a travel time. Moreover other problem-related information can

be associated with the arc: allowed traversal periods, allowed vehicle types, time-

dependent travel times and so on.

The fleet of vehicles that serve the customers is characterized by the capacity

of each vehicle, that limits the load that the vehicle can carry, the number and

characteristics of commodities, the home depot of each vehicle, the cost associated

to the use of the vehicle and other information related to the subset of arcs that

a vehicle can traverse, the maximum tour length for each vehicle, the loading

operations that can be performed.

The information associated with the customers are generally related to the

demand of goods or waste, possibly of different kind, that must be delivered or

collected by the vehicle, the periods of the day (time windows) during which the



1. Introduction 5

customer can be served, the amount of time required to deliver or collect the

goods (service time), possibly dependent on the vehicle type, and the set of vehicles

allowed for the service operation. Finally the drivers that operate the vehicles have

to follow union contracts and rules (breaks, working periods, maximum duration

of driving time, driving license restrictions).

Some other constraints can be imposed on the routes. Precedence constraints

can be imposed on the visiting order of the customers associated with a route

(this situation arises in pickup and delivery problems and in backhauling problems).

In order to compute the cost of a route and to check the operational constraints

imposed on it the travel costs and the travel times between customers and depots

have to be known. It is not uncommon that the network graph is transformed

into a complete graph where the cost cij of arc (i, j) is equal to the shortest path

connecting i to j and the travel time tij is equal to the sum of the travel time of

the arcs belonging to the shortest path.

Vehicle routing problems can have several and contrasting objectives. Typically

the global transportation cost is to be minimized. This cost is computed considering

the travel costs (or travel times) and the fixed costs related to the use of the vehicles

(and perhaps the associated drivers). The number of vehicles needed to serve all

customers is another objective that often has to be minimized. This happens when

the travel costs are negligible compared to the fixed cost associated with the use

of the vehicles. Other objectives that can be required are the minimization of the

penalties associated with delays, the maximization of the overall level of service,

the balancing of the length of the routes and the balancing of the load of the

vehicles.

I refer the reader to the book of Toth and Vigo [75] which surveys classical

heuristic approaches (Laporte and Semet [27]), metaheuristics (Gendreau, Laporte

and Potvin [4]) and exact approaches based on branch-and-bound (Toth and Vigo

[73]), branch-and-cut (Naddef and Rinaldi [9]) and Branch-and-Price (Bramel and

Simchi-Levi [36]). Other surveys of VRPs can be found in Fisher [55], Laporte [26]

and in Laporte et al. [22]. Several exact algorithms have been proposed in the last

decade. Branch-and-Bound based algorithms for direct graphs (see Fischetti et al.

[53]) are able to solve up to 300 customers randomly generated instances and up to

70 customers real world instances. Branch-and-Bound algorithms for undirected

graphs (see Fisher [54]) solve instances with up to 100 customers. Recent serial

and parallel Branch-and-Cut codes (see Ralphs et al. [88], Lysgaard et al. [42]

and Blasum et al. [89]) are able to solve difficult 76 and 100 customers instances.

The Branch-and-Price implementation of and Hadjicostantinou et al. [14] pro-

vide effective lower bounds (at least 96%) for instances with up to 150 customers.

Another effective Column Generation algorithm is proposed by Chabrier [1] who
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obtained 17 new optimal solutions for CVRPTW instances from the Solomon’s set

[61]. More recent hybridizations of Cut and Column generation algorithms can

be found in Fukasawa et al. [79], the authors present a robust framework for the

solution of routing problems that solves instances with up to 100 customers.

1.2 Purpose

The purpose of this thesis is to study and implement an algorithmic approach

based on the Branch-and-Price framework for the solution of various vehicle rout-

ing problems. Such approach should be general enough to be applicable to different

variations of the basic VRP and for this purpose I considered the three problems

described in the next section: the Capacitated VRP, the VRP with Delivery and

Collection and the VRP with Time Windows. Vehicle routing problems have been

studied using different strategies and techniques, and it is often difficult to make a

comparison between different results obtained on different machines or with slightly

different formulations. An attempt to compare different approaches has been made

by Toth and Vigo in [75]. The Branch-and-Price algorithms for vehicle routing

problems presented in the literature are based on a Set Partitioning or Set Cov-

ering reformulation of the VRP, solved via column generation, where the pricing

problem is the Resource Constrained Elementary Shortest Path Problem (RCE-

SPP). Since the solution of the pricing problem is a central issue to implement

effective Branch-and-Price codes, I devote the main part of this thesis to enlarge

the knowledge on this problem. The most successful approaches for the RCESPP

proposed in the literature are based on dynamic programming (see Irnich et al. [83]

for a recent review). With this thesis I propose some innovative algorithmic ideas

to improve the dynamic programming algorithms for the solution of the pricing

problem: further elaborating on the approach of Feillet et al. [8] I propose exact

algorithms for the RCESPP based on bi-directional and bounded dynamic pro-

gramming. I also propose a new dynamic programming algorithm for the solution

of the RCESPP, called Decremental State Space Relaxation, which is based on the

State Space Relaxation idea proposed by Christofides et al. [67].

Finally a goal of this thesis is to investigate advantages and drawbacks of two

possible approaches: to solve the pricing problem at optimality or to solve a re-

laxation, namely the RCSPP, where cycles are allowed. This second technique

has been frequently used in the literature (see Cordeau et al. [44]). The trade-off

between relaxed pricing, which is faster, and exact pricing, which yields a stronger

dual bound, is computationally examined.
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1.3 Outline

The chapter 2 is devoted to the definition and formulation of vehicle routing prob-

lems with particular attention to the CVRP, the VRPDC and the CVRPTW.

Chapter 3 provides the shortcomings for column generation methods and the VRP

reformulation. Chapter 4 describes the algorithms used to solve the pricing sub-

problem arising from the VRP reformulation. Chapter 5 is devoted to the imple-

mentation issues and finally chapters 6 to 8 report on computational experiments.



Chapter 2

Vehicle Routing Problems

In this chapter I provide the definitions of the vehicle routing problems that I

consider. Next I provide different mathematical formulations for VRP. Moreover

in this thesis I consider a less studied VRP problem arising in the reverse logistic

environment: the vehicle routing problem with delivery and collection, where the

forward flow of goods is combined, and should be optimized, with the backward

flow of waste. This crucial problem in the reverse logistics management has sev-

eral practical motivations because the recycling topic has received more and more

attention in the last period.

2.1 The Capacitated Vehicle Routing Problem

The Capacitated Vehicle Routing Problem (CVRP) is the basic version of the

VRPs, where all customers are delivery customers, the demands are known, all

vehicles are identical and they belong to the same central depot. The only imposed

constraints are related to the capacity of the vehicles.

The objective is to minimize the total travel cost. Using graph notation the

CVRP may be described as follows: let G = (V, A) be a complete graph, where

V = {0, . . . , n} is the node set in which node 0 represents the depot while nodes

1, . . . , n represent the customers.

A given nonnegative cost cij is associated to each arc (i, j) ∈ A and it represents

the travel cost to reach j starting from i.

If the graph is directed the problem is called asymmetric capacitated VRP

(ACVRP) otherwise cij = cji and the problem is called symmetric capacitated

VRP (SCVRP). The graph G has to be (strongly) connected.

Given a set of nodes S ⊆ V , δ(S) is the set of edges of the graph with only one

endpoint in S and E(S) is the set of edges with both endpoints in S.

It is a common assumption that the cost matrix satisfies the triangle inequality,

8
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that is

cik + ckj ≥ cij ∀i, j, k ∈ V (2.1)

It is also often assumed that each customer is associated with a point in the

plane and the cost cij is equal to the Euclidean distance between the two points.

In this case the distance matrix is symmetric and satisfies the triangle inequality.

The resulting problem is called Euclidean SCVRP.

A known nonnegative delivery demand di is associated with each customer.

Given the set S ⊆ V , d(S) denotes the total demand of the set, that is d(S) =
∑

i∈S di.

A set of K identical vehicles, each with capacity Q, is available at the depot;

Obviously Q ≥ di for each i = 1, . . . , n. If it happens that di > Q for some

customer i the arising problem is called VRP with Split Delivery where multiple

visits to each customer are allowed (see Dror et al. [52] and Archetti et al. [13]).

It is assumed that the number of available vehicles K is equal than Kmin, the

minimum number of vehicles needed to serve all customers. The value of Kmin can

be computed solving a Bin Packing Problem (BPP) (see Martello and Toth [86])

associated with the CVRP. It requires the computation of the minimum number

of bins needed to pack all the given items. The weight of each item is equal to the

delivery demand di of each customer i, while the capacity of each bin is equal to

Q.

The CVRP requires the computation of at most K tours with minimum cost

such that:

1. each tour starts and ends at the depot

2. each customer is visited once

3. the sum of the demands of the customers visited in a tour does not exceed

the vehicle capacity Q.

In the literature some variants of the CVRP have been considered. If the

number of routes is to be minimized it is common to associate a big fixed cost with

the use of the vehicles. This can be done if the number K of available vehicles

at the depot is greater than the minimum number of vehicles required, Kmin (see,

e.g, Hadjicostantinou et al. [14] and Ralphs et al. [88]).

Another variant arises when the vehicles have different capacities Qk, k =

1, . . . , K or when multiple depots are present and each vehicle is associated to its

own depot (see Desrochers et al [50], Fisher [55], Ribeiro et al. [6] and Carpaneto

et al. [19]).
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When the cost cij represents the travel time from customer i to customer j the

objective of the problem is to minimize the total duration of the routes. When

a constraint on the maximum duration is imposed a Distance Constrained VRP

(DVRP) arises. When both capacity and duration constraints are imposed the

problem is called Distance Constrained CVRP (DCVRP). Moreover each vehicle

may be associated with a different maximum travel time Tk, k = 1, . . . , K (see

Laporte et al. [30], [28]).

The CVRP is known to be NP -hard in the strong sense because the well known

Traveling Salesman Problem (TSP) arises as a special case, when
∑

i∈V di ≤ Q and

K = 1 (see Lawler et al. [16]).

2.2 The VRP with Delivery and Collection

The VRP with Delivery and Collection (VRPDC)arises when with each customer

i are associated a delivery demand di and a pickup demand pi representing the

transport requests of an homogeneous commodity. Sometimes it happens that

only the difference between the delivery demand and the pickup demand is given

(that can be negative). For each customer i the origin and the destination of the

transportation request are common (that is they coincide with the depot). This

is a crucial problem within the reverse logistic process where the forward flow of

goods must be optimized with the backward flow of waste and recycled items.

The solution of a VRPDC consist of finding exactly K routes such that:

1. each tour starts and ends at the depot

2. each customer is visited once

3. the load of the vehicle does not exceed its capacity Q.

It is assumed that, at each customer, the delivery operation is performed before

the pickup operation. This means, for example, that a vehicle with capacity equal

to 10 can visit a node with pickup demand pi = 8 and a delivery demand di = 9.

The VRPDC has been considered by Dell’Amico et al [46] who proposed an exact

algorithm based on Branch-and-Price. Dethloff [10] and Bianchessi and Righini

[65] proposed respectively some heuristics and meta-heursistics to solve large sized

instances. It is commonly assumed that the VRP with Delivery and Collection

and the VRP with Simultaneous Pickups and Deliveries (VRPSPD) are the same

problem.

When for each customer i two additional nodes are defined Oi and Di rep-

resenting respectively the origin of the goods to be delivered at node i and the
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destination of the goods picked up at node i the VRP with Pickup and Delivery

(VRPPD) arises. (see Savelsbergh et al. [64] and Sol [60])

The solution of a VRPPD consist of finding exactly K routes such that:

1. each tour starts and ends at the depot

2. each customer is visited once in one tour

3. the load of the vehicle does not exceed its capacity Q.

4. for each customer i the origin node Oi is visited in the same route and before

customer i

5. for each customer i the destination node Di is visited in the same route and

after customer i

Both VRPPD and VRPDC are NP -hard in the strong sense since they gener-

alize the CVRP problem, arising when Oi = Di = 0 and pi = 0 for each i ∈ V .

Moreover the TSP with Pickup and Delivery and the TSP with Distribution and

Collection arise when K = 1.

A special version of VRPPD arises when each customer i has only a delivery

demand or a pickup demand, and the set of customers can be divided into two

parts: the Linehaul customers requiring the delivery of a certain amount of goods

di and the Backhaul customers requiring the collection of an amount pi; the set

of linehaul customers has to be served before the set of backhaul customers. This

variant is called VRP with backhauls (VRPB) (see Goetschalckx et al. [57] and

Mingozzi et al. [2] and Toth et al. [72]).

2.3 The VRP with Time Windows

In real world applications customers are not available for delivery operations dur-

ing all the day due, for example, to warehouse opening time periods, for traffic

restrictions on the road network within cities or for any other time restriction.

The widely studied version of CVRP with time restrictions is the VRP with

Time Windows (CVRPTW) where each customer i has an associated time window

[ai, bi]. Customer i has to be visited within its time window. It is common that

waiting until instant ai at node i is allowed if the vehicle arrives early.

The travel time tij and the service time si at node i are given. The service

time represents the time needed for loading or unloading operations at customers

location.

A common assumption is that the costs and the travel-times coincide, and the

starting time of the vehicles leaving the depot is assumed to be equal to 0.
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Similarly to the CVRP the solution of the CVRPTW is a set of K routes of

minimum total cost such that

1. each route starts and ends at the depot

2. each customer is visited once

3. the capacity of the vehicle is not exceeded along the route

4. for each customer i the service time starts within the associated time window

and it takes si.

When the capacity constraint is not tight, that is
∑

i∈V di ≤ Q and K = 1, a

TSP with time windows arises (see Dumas et al. [92]).

Several special cases and variants have been considered in the literature: the

multiple TSP with time windows arises from an CVRPTW eliminating the capacity

constraint (see Desaulniers et al. [24], [39]); heterogeneous fleet, multiple-depot and

multiple time windows have been considered in Solomon and Desrosiers [62]; soft

time windows have been taken into account as an extension in Desaulnier et al.

[23].

Several other problems arise when pick-up and delivery operations are combined

with time windows see, e.g., Thangiah et al. [87], Sigurd et al. [59], Nanry and

Barnes [91] and Hong and Liang [7].

CVRPTW is NP -hard in the strong sense because it generalizes the CVRP

when ai = 0 and bi =∞ for each customer i.

For a recent survey on the CVRPTW see Cordeau et al. ([44]).

2.4 Mathematical models

In this section I recall the basic mathematical programming formulations for VRPs.

For the purpose of this thesis I will use only the set partitioning model of VRP

presented in section 2.4.3 but for the sake of completeness I also report the flow

model and the commodity model. Since an exhaustive discussion of mathematical

formulations can be found in [74] and [29] here I give only a brief description of

the most commonly used models for CVRP.

2.4.1 Vehicle flow model

There are two main type of vehicle flow models: the first is a two-index vehicle

flow model which uses O(n2) binary variables x. Each variable xij takes value 1

if arc (i, j) is used in the solution and 0 otherwise. Constraints are imposed on
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the incoming and outgoing degree of the flow variables for each customer i and

subtour elimination constraints are imposed. There are different type of subtour

elimination constraints (see, e.g., Toth and Vigo [74]). This flow formulation is

used mainly for basic versions of the VRP since there is no way to handle practical

issues such as different vehicles, precedence constraints, time windows, etc.

The second vehicle flow model is the three-index vehicle flow model; it uses

O(n2K) binary variables x and O(nK) binary variables y. Each variable xijk takes

value 1 if the vehicle k traverse arc (i, j) in the solution, 0 otherwise. Each variable

yik is equal to 1 if vehicle k serves customer i.

This model is useful to represent constraints on the type of vehicle serving each

customer or vehicle-related constraints such as different capacities or tour lengths.

Here I report the three-index mathematical model:

Min
∑

i∈V

∑

j∈V

cij

K
∑

k=1

xijk (2.2)

s.t.

K
∑

k=1

yik = 1 ∀ i ∈ V \ {0} (2.3)

K
∑

k=1

y0k = K (2.4)

∑

j∈V

xijk =
∑

j∈V

xjik = yik ∀ i ∈ V, k = 1, . . . , K (2.5)

∑

i∈V

diyik ≤ Q ∀k = 1, . . . , K (2.6)

∑

i∈S

∑

j∈S

xijk ≤ |S| − 1 ∀ S ⊆ V \ {0}, |S| ≥ 2, k = 1, . . . , K (2.7)

xijk ∈ {0, 1} ∀ i, j ∈ V, k = 1, . . . , K (2.8)

yik ∈ {0, 1} ∀ i ∈ V, k = 1, . . . , K (2.9)

where 2.7 is one of the known formulations for the subtour elimination con-

straints.

Successful applications of the vehicle flow model can be found in Branch-and-

Bound and Branch-and-cut algorithms for the Capacitated Vehicle Routing Prob-

lem (see Toth and Vigo [73] and Naddef and Rinaldi [9])

There are many extensions for the three-index flow formulation to handle dif-

ferent issues. I refer the reader to Toth and Vigo [74], [75] for more details on those

extensions.

Recent implementations of parallel Branch-and-Cut computer programs are

able to solve up to 100 customers instances of VRP in reasonable computing time

(see Ralphs et al. [88], Fukasawa et al. [79] and Lysgaard et al. [42]).
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2.4.2 Commodity flow model

Commodity flow model is based on flow variables yij and yji that represent respec-

tively the capacity used and the capacity left on the vehicle traveling from i to j.

These formulations need an extended graph G′(V ′, A′) where a copy of the depot,

say node n + 1, has been added. Within the modified graph routes become paths

form vertex 0 to vertex n + 1. The binary variables x, similarly to the two-index

vehicle flow formulation, represent the use of the arc.

Min
∑

(i,j)∈A′

cijxijk (2.10)

s.t.
∑

j∈V ′

(yji − yij) = 2di ∀ i ∈ V ′ \ {0, n + 1} (2.11)

∑

j∈V ′\{0,n+1}

y0j =
∑

i∈V ′\{0,n+1}

di (2.12)

∑

j∈V ′\{0,n+1}

yj0 = KQ−
∑

i∈V ′\{0,n+1}

di (2.13)

∑

j∈V ′\{0,n+1}

yn+1j = KQ (2.14)

yji + yij = Q ∀(i, j) ∈ A′ (2.15)
∑

i∈V ′

(xij + xji) = 2di ∀ i ∈ V ′ \ {0, n + 1} (2.16)

xij ∈ {0, 1} ∀ (i, j) ∈ A′ (2.17)

yij ≥ 0 ∀ (i, j) ∈ A′ (2.18)

An application of the commodity flow formulation to the VRPDC can be found

in Baldacci et al. [78].

2.4.3 Set partitioning model

The set partitioning model is based on a large set made of all feasible routes, say P .

The solution of the set partitioning problem asks to select from this set K routes

of minimum cost such that each customer is served exactly by one route.

Minimize
∑

r∈P

crzr

subject to
∑

r∈P

airzr = 1 ∀i ∈ V (2.19)

∑

r∈P

zr = K (2.20)

zr ∈ {0, 1} ∀r ∈ P (2.21)
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where cr is the cost of route r and air is the number of times route r visits customer

i. All problem related constraints are considered in the subproblem of constructing

the set of feasible routes P . The high flexibility of the set partitioning formulation

to handle several constraints (see Lübbecke [15] for a recent review; see Desrosiers

et al. [37], Desrocher and Soumis [48] and Ribeiro et al [6] for some applications

of Branch-and-Price to VRP) within the same framework is the reason for the

extensive research performed in the last 20 years.

In the next chapter I will introduce the methods used to deal with set parti-

tioning model.



Chapter 3

Column generation and

Branch-and-Price

In this chapter I recall the basic concepts of column generation and Branch-and-

Price to solve the set covering reformulation of VRPs.

3.1 Column Generation

Several linear problems exhibit some kind of structure in the constraint matrix in

form of large submatrices of zeros. Within the constraint matrix it is possible to

distinguish two type of constraints: the linking constraints and the ”subsystem”

constraints. The main idea of decomposition methods is to use the linking con-

straints at a coordinating level and the ”subsystem” constraints at a subordinated

level using the subproblem structure to devise ad-hoc algorithms for them.

The seminal work of Dantzig and Wolfe [32] originated an effective decomposi-

tion method for large linear programs.

Let us consider the following linear program called master problem (MP):

z∗ = min
p∈P

∑

cpxP

s.t.
∑

p∈P

apxp ≥ b

xp ≥ 0 ∀p ∈ P

At each iteration of the simplex method we look for a non-basic variable to price

out and enter the basis. This means that given the non negative vector of dual

variables λ we want to find:

min
p∈P
{cp = cp − λTap}

16
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The complexity of this step depends on |P | and is time consuming when |P |

is huge. The idea is to work with a small subset of columns P ′ ⊆ P : the linear

program derived in such way from MP is called Restricted Master Problem (RMP).

If the RMP is feasible, let x∗ and λ∗ be respectively the primal and dual optimal

solutions of the RMP and assume the cost cp of a generic column p can be computed

as a function c : P → <. Then the problem

c∗ = min
p∈P
{c(p)− λT∗ap}

is an oracle for pricing. If the solution is non-negative then no reduced cost coeffi-

cients cp has a negative value and the restricted master problem cannot be improved

and x∗ is the optimal solution also for the original master problem. Otherwise the

column which has the reduced cost equal to c∗ is a candidate to enter the basis and

it is added to the RMP. The method is repeated until no negative reduced cost

columns are found. The method described is known as Column Generation. When

the set of negative reduced cost solutions is finite then the column generation al-

gorithm converges and is exact. The core part of column generation is, of course,

the pricing step. It inherits the difficulty of the non-basic column search problem

but it gains the advantage to be structured in a different way with respect to the

original problem. Let z be the optimal objective value of the RMP over a set of

feasible columns P ′, z = λT∗b. When W ≥
∑

p∈P xp is a valid upper bound of the

optimal solution of the master problem also a lower bound can be computed:

z + W · c∗ ≤ z∗ ≤ z

The presented bound is available when exact pricing is performed but it may be

computed also when a lower bound c∗ on c∗ is known. This bound is always

weaker then the one obtained by exact pricing and typically it is computed when

the computing time for exact pricing is unmanageable.

3.2 Branch-and-Price

When we are dealing with an integer linear program of the form:

z∗ = min
p∈P

∑

cpxP

s.t.
∑

p∈P

apxp ≥ b

xp ∈ Z+ ∀p ∈ P

we would like to apply the column generation method described above to find

optimal integer solutions; to do so we need to embed the column generation process

into a branch-and-bound algorithm.
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The first known attempt dates back to the same years of Dantzig and Wolfe

when, independently, Gilmore and Gomory ([76]) developed a column generation

approach to the cutting stock problem. Several applications of column generation

techniques appeared in the last two decades, Desrosiers et al. [37], Desrocher and

Soumis [48], Ribeiro et al [6], Vance et al. [77] and Gamache et al. [56]. The

above list of articles on column generation methods isn’t exaustive (for a recent

and complete survey on column generation methods see Lübbecke and Desrosiers

[15]) but it is sufficient to conclude that most successful applications of column

generation happen in IP problems which can be modeled as set partitioning (or set

covering) ones. In most of the above examples columns have a defined structure

and ad-hoc algorithms can be modeled to price out new columns. Because the

pricing problem often encodes structures like paths, sets or permutations encoding

the knowledge on how the columns are to be constructed.

In this context the Branch-and-Price algorithm (B&P), which is a general-

ization of branch-and-bound with LP relaxations, allows the generation of new

columns throughout the branch-and-bound process. Moreover the integer linear

program reformulation still allow to devise good branching rules compatible with

pricing algorithms.

Figure 3.2 represents the scheme of a basic Branch-and-Price algorithm. The

search tree is properly initialized with the root node. At each node of the search

tree the RLMP is initialized with a subset of feasible columns for the active node.

Then the linear relaxation of the restricted master problem is solved by column

generation as described above. If the solution is integer then it is a feasible solution

for the original master problem and it is compared with the current incumbent

solution, in the same manner of standard branch-and-bound. If the LP solution

does not satisfy the integrality conditions then branching occurs to cut off the

current fractional point. At the end of the search process the best integer solution

is the optimal solution for the original integer linear problem.

The lower bound described in the previous section is still valid for column

generation applied to integer linear programs. An application of the weaker bound

mentioned above can be found in Desrosiers et al [37] and Desrochers et al. [49]

where the authors used the solution of the relaxation of the pricing problem (the

resource constrained elementary shortest path, RCESPP) to compute a valid lower

bound.

A valid branching scheme should cut off the current fractional solution, should

produce a balanced search tree and should keep the structure of the problem un-

changed.

It should be pointed out that conventional integer programming branching on

variables of the RMP is not very effective on B&P algorithms because it destroys
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Begin

Initialize the search tree with the root node

Select a node from the search tree

Initialize the RLMP

Solve the RLMP and get the dual variables λ

Solve the pricing problem (c∗)

Is c
∗

< 0 ? Add the column(s) to the RLMP

Is the RLMP integer? Perform branch decision

Compare the RLMP with UB Add child nodes to the search tree

Is the search tree empty?

End

No

Yes

Yes

No

Yes

No

Figure 3.1: The Branch-and-Price algorithm
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the structure of the pricing problem. While fixing a variable to 1 does not create

problems to be taken into account at the pricing level, fixing a variable to 0 means

that this column is excluded from the RMP and it should not be generated anymore

by the oracle for the pricing. Unfortunately it is likely to happen because the

excluded column will have profitable dual prizes.

Several branching rules have been proposed in the literature to overcome this

last issue. Here I report some of the main ideas to perform branching in B&P

algorithms.

• One of the most common branching scheme is the one proposed by Ryan and

Foster [11] for problems based on set partitioning formulation considering the

following proposition: If Y is a 0− 1 matrix and a basic solution to Y x = 1

is fractional then there exist two rows r and s such that:

0 <
∑

k:yrk=1, ysk=1

xk < 1

The pair r, s gives the following branching constraints:

∑

k:yrk=1, ysk=1

xk = 0 and
∑

k:yrk=1, ysk=1

xk = 0

the rows r, s have to be covered by different columns on the left branch

and by the same column on the right branch. The above conditions can

be added to the master problem as constraints or taken into account by

removing unfeasible columns from the master problem. Not adding explicitly

the branching constraints to the RMP has the advantage of not introducing

new dual variables that have to be considered in the pricing problem. On

the other hand the insertion and cancellation of columns must be handled at

each node of the search tree. When dealing with routing problems it is more

easy, at the pricing level, to impose that two customers have to be covered

by the same vehicle than imposing that two customers have to be covered by

different vehicles.

• Another effective method is branching on original variables. We know that

original variables are integer and we need to separate their fractional values

when arising in the column generation process. For example Desaulniers et

al. [23] and Desrochers et al. [49] used this method in the vehicle routing

problem with time windows taking decisions on flow variables and on the

starting time of the service at customers. In section 5.1.9 I devise the same

methods to get integer values from the RMP.
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3.3 VRP reformulation

As explained in chapter 2 vehicle routing problems require to compute a set of

tours for a fleet of vehicles that must provide a certain kind of service to a given

set of customers. Each vehicle starts from a given depot and goes back to it after

visiting a subset of customers. The objective is to minimize the total distance

traveled.

The structure of vehicle routing problems suggests to reformulate them as set

covering problems and to apply column generation, because a solution is made

by a set of subtours, one for each vehicle of the fleet, which can be computed

independently provided that they cover the set of customers to be visited. A com-

prehensive treatment of column generation approaches to vehicle routing problems

can be found in Desrosiers et al. [38], [23], Fisher [55] and Bramel et al. [36].

Hereafter I recall the theoretical aspects of decomposition principles and provide

the Dantzig-Wolfe decomposition process to obtain a set-partitioning model, like

the one presented in section 2.4.3, starting from a vehicle flow model presented in

2.4.1.

The theory is based on the Minkowski’s theorem (see Nemhauser and Wolsey

[33]). Let X = { X ∈ R
n
+| AX ≤ b} be a nonempty polyhedron defined by a finite

set of constraints and lying within a nonnegative orthant of real numbers. A point

xp ∈ X is defined to be an extreme point of X if there do not exist X1, X2 ∈ X ,

X1 6= X2, such that xp = 1/2X1 + 1/2X2. If X (0) = { X ∈ R
n
+| AX ≤ 0} 6= {0},

then X ∈ X (0) = is called a ray of X . A point xp ∈ X is defined to be an extreme

ray of X if there do not exist rays X1, X2 ∈ X (0), X1 6= λX2, for any λ > 0, such

that xp = 1/2X1 + 1/2X2.

Then a polyhedron X has a finite number of extreme points and extreme rays

and a point X ∈ X can be written as a convex combination of extreme points plus

a nonnegative combination of extreme rays.

The decomposition scheme is obtained dropping the integrality constraints (2.8)

and (2.9). The master problem is given by (2.2)-(2.4). The subproblem is defined

by the flow conservation constraints (2.5) and capacity constraints (2.6) from con-

straints (2.4)and (2.9) we can impose y0k = 1 in each subproblem and therefore

the subtour elimination constraints (2.7) are handled implicitly.

Let F k the polyhedron defined by constraints (2.5)-(2.7) associated with vehicle

k ∈ K. When we impose the integrality constraints (2.8) and (2.9) we define the

convex hull of F k

Let P be the set of feasible paths. Each path p ∈ P corresponds to an elemen-

tary path which can be described by binary values xk
ijp, k ∈ K, (i, j) ∈ A, p ∈ P .

Any solution Xk
ij, Y

k
i to the master problem can be expressed as a nonnegative
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convex combination of a finite number of elementary paths:

Xk
ij =

∑

p∈P

xk
ijpΘ

k
p ∀k ∈ K, ∀(i, j) ∈ A (3.1)

Xk
i =

∑

p∈P

∑

j∈V

xk
ijpΘ

k
p ∀k ∈ K, ∀i ∈ V (3.2)

∑

p∈P

Θk
p = 1 (3.3)

Θk
p ≥ 0 ∀p ∈ P (3.4)

Hence xk
ijp, k ∈ K, (i, j) ∈ A, p ∈ P represents the set of extreme rays of the

subproblem set of constraints F k.

Making the substitution into (2.2)-(2.4) the master problem takes the following

form:

minimize
∑

p∈P

(
∑

k∈K

∑

(i,j)∈A

cijx
k
ijk)Θ

k
p (3.5)

subject to
∑

p∈P

(
∑

j∈V

xk
ijp)Θ

k
p = 1 ∀k ∈ K, ∀i ∈ V (3.6)

∑

p∈P

(
∑

j∈V

xk
0jp)Θ

k
p = 1 ∀k ∈ K, ∀i ∈ V (3.7)

Θk
p ≥ 0 ∀k ∈ K, ∀p ∈ P (3.8)

Next define the parameters cp, aip, bp as follows:

ck
p =

∑

(i,j)∈A

cijx
k
ijp (3.9)

ak
ip =

∑

j∈V

xk
ijp (3.10)

bk
p =

∑

j∈V

xk
0jp (3.11)

Since
∑

j∈V xk
0jp = yk

0p = 1 then bk
p = 1 for all k ∈ K

Making the substitution in (3.5)-(3.7) the resulting master problem is then

given by:

minimize
∑

p∈P

∑

k∈K

ck
pΘ

k
p (3.12)

subject to
∑

p∈P

ak
ipΘ

k
p = 1 ∀k ∈ K, ∀i ∈ V (3.13)

∑

p∈P

Θk
p = 1 ∀k ∈ K (3.14)

Θk
p ≥ 0 ∀k ∈ K, ∀p ∈ P (3.15)
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If the fleet is composed by identical vehicles the restricted master problem can

be surrogated over k. Let zp =
∑

k∈K Θk
p, cp =

∑

k∈K ck
p and aip =

∑

k∈K akip

leading to the following formulation:

minimize
∑

p∈P

cpzp

subject to
∑

p∈P

aipzp = 1 ∀i ∈ V (3.16)

∑

p∈P

zp = K (3.17)

zp ≥ 0 ∀p ∈ P (3.18)

The above formulation is the linear relaxation of a set partitioning type problem

with additional constraint on the total number of vehicles and a set of convex

combination constraints.

Let zp be an optimal solution of the restricted master problem over the subset

P ′ of feasible columns and λi, i ∈ V and λ0 be the dual variables associated with

the covering constraints (3.16) and with the constraint (3.17), respectively. A new

column with minimum marginal cost is generated solving the following problem:

minimize rp = cp −
∑

i∈V

λiaip − λ0 (3.19)

(3.20)

Where the unknown vector ap is to be determined.

The kind of pricing problem arising in this context is therefore a shortest path

problem with some special characteristics: first, it is formulated on a graph with

costs on the arcs and prizes on the vertices. This is equivalent to formulate it

on a graph with no prizes but with negative cost arcs and possibly negative cost

cycles. Therefore the requisite that the path must be elementary does not come for

free from cost minimization but it must be explicitly enforced. Second, the pricing

problem may be subject to a number of additional restrictions, as mentioned above.

These constraints are usually represented as resource constraints, since distances,

costs, time, capacities can all be interpreted as resources, that are consumed every

time a vehicle travels along an arc or visits a customer. Therefore the pricing

problem turns out to be a resource constrained elementary shortest path problem

(RCESPP).

In the following chapter I formally define the RCESPP and provide algorithms

based on dynamic programming for its solution.



Chapter 4

The pricing problem: the

RCESPP

In this chapter I consider dynamic programming algorithms for the pricing problem

(the resource constrained elementary shortest path problem, RCESPP), following

the same approach of Feillet et al. [8] and I suggest and evaluate some ideas to

improve their performance. Moreover I propose a new algorithm based on state

space relaxation obtained from the improved one.

The elementary shortest path problem (without resource constraints) has been

studied in many textbooks: see for instance the classical reference by Ahuja et

al. [81]. The shortest path problem with resource constraints has been addressed

with methods based on the Lagrangean relaxation of the resource constraints, like

those of Handler and Zang [34] and Beasley and Christofides [43]; however these

methods are effective when the Lagrangean subproblem is a polynomially solvable

shortest path problem, that is when arc costs are non-negative. If the underlying

graph may have negative cost cycles, the resource constrained elementary shortest

path problem (RCESPP) is strongly NP-hard [51].

It is possible to address the pricing problem by optimizing its relaxation, ob-

tained by dropping the constraint that the path must be elementary. Solving a

resource constrained shortest path problem (RCSPP) requires less computing time

but yields less tight lower bounds, since columns may include cycles. The two differ-

ent approaches have been followed for instance by Feillet et al. [8] and Desrochers

et al. [49] to solve the vehicle routing problem with time windows (CVRPTW)

through column generation. The trade-off between the advantages and the draw-

backs of these two design choices depends on the kind of side-constraints of the

vehicle routing problem and on their tightness. The main scope of this thesis is to

investigate this topic.

For a recent survey on models and algorithms for the RC(E)SPP I refer the

24
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reader to Irnich and Desaulniers [84].

From section 4.1 to section 4.5 I provide the definitions of RCESPP and the

dynamic programming algorithm of Desrochers [25] and Feillet et al. [8] for its

solution. In particular I consider three variants arising from the set covering refor-

mulation of the capacitated vehicle routing problem (CVRP) the vehicle routing

problem with delivery and collection (VRPDC) and the capacitated vehicle rout-

ing problem with time windows (CVRPTW) presented in chapter 2. In section

4.6 I illustrate the main ideas to improve the elementary dynamic programming

algorithm. In section 4.7 provide the definitions of the state space relaxation of the

RCESPP. In section 4.7.2 I illustrate the ideas to compute an elementary solution

using the state space relaxation. In section 4.8 I propose a new algorithm for the

RCESPP based on state space relaxation.

4.1 Problem definition

The RCESPP is defined as follows: a graph G(V,A) is given, where the vertex set

V is made by a set of vertices N representing N customers and two vertices s and

t representing the depot. A non-negative prize λi is associated with each vertex

i ∈ N , a non-negative cost λ0 is associated with the depot and a non-negative

cost cij is associated with each arc (i, j) ∈ A. Costs represent shortest paths and

therefore they satisfy the triangle inequality. A vehicle must go from s to t, visiting

a subset of the other vertices; no cycles are allowed. The objective is to minimize

the cost, given by the sum of the costs of the arcs traversed minus the sum of the

prizes collected at the vertices visited.

These definitions of the problem are common to all RCESPP versions arising

from the different routing problems I consider. Additional constraints must be

taken into account, depending on the kind of vehicle routing problem at hand. All

these additional constraints are modeled as resource constraints and they will be

specified in the remainder.

4.2 Dynamic programming

The basic dynamic programming approach to the RCESPP is based on the algo-

rithm devised by Desrochers [25] for the RCSPP. It is an extension of the Bellman-

Ford algorithm with the addition of resource constraints. The algorithm assigns

states to each vertex: each state of vertex i represents a path from s to i. Each state

has an associated resource consumption vector R whose component Rr represents

the quantity of resource r used along the corresponding path. Each state has an
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associated cost C and the optimal solution is the minimum cost path reaching t.

Different states associated with the same vertex i correspond to different feasible

paths reaching i. Hence states are represented by a label of the form (R, C, i). The

dynamic programming algorithm iteratively selects a vertex and extends its states

to all possible successors. When a state (R, C, i) is extended to generate other

feasible states (R′, C ′, j), the cost and the resource consumption vector of the new

state must be computed and those states for which one or more components of R′

exceed the available capacity are fathomed. The cost is initialized at 0 at vertex s

and it is updated according to the formula

C ′ := C + cij − λi/2− λj/2

where λi = −λ0 if i = s and λj = −λ0 if j = t while vector R is initialized and

updated according to the specific problem at hand. In addition dominance rules

are applied in order to delete dominated states.

4.3 Resource constraints

Hereafter I consider three different specializations of the resource constraints arising

from the CVRP, the VRPDC and the CVRPTW. I chose these three problems to

validate the proposed approach, because they offer a significant mix of different

characteristics of resource types and constraints. In the first case there is only one

resource, whose consumption depends on the vertices visited. In the second case

there are two resources associated with the vertices visited and they are interacting:

the consumption of one of them also depends on the consumption level of the

other. In the third case there are two resources, one associated with the vertices

visited and the other associated with the arcs traversed. Resources are subject to

a constraint on their overall consumption along the s-t path, with the exception

of the case with time window, where a resource (time) is subject to different local

constraints at each vertex.

Capacity. In the CVRP a non-negative integer pick-up demand pi is associated

with each vertex i ∈ N and a non-negative vehicle capacity Q is given. The sum

of the demands of the nodes visited by the same vehicle cannot exceed Q. This

constraint is modelled by one resource, representing the amount of capacity still

available along a path. Let q be the amount of resource consumed. When a vehicle

leaves vertex s it is empty, that is q = 0. Every time a node i is visited the

corresponding amount of load pi is stored on board; therefore q is increased by

pi. Each state is represented by a label (q, C, i), where q is the amount of load

picked-up from s to i (included). Each time a state is extended along arc (i, j)
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from a label (q, C, i) to a label (q′, C ′, j), the resource consumption update rule is

q′ := q + pj

A state (q, C, i) is feasible only if q ≤ Q.

Distribution and collection. In the VRPDC each vertex i has two non-

negative integer quantities pi and di associated with it, representing respectively

the amount of load to be collected and to be delivered at that vertex. Each vehicle

has a finite capacity Q, it leaves the depot carrying the total amount of load it must

deliver and returns to the depot carrying the total amount of load it has collected.

The capacity cannot be exceeded anywhere along the path. In the corresponding

RCSPP the capacity constraint is taken into account by two additional resources,

whose consumption is indicated by π and δ. The first resource at vertex j is the

amount of load that the vehicle can pick-up after visiting j. Its consumption π

increases after every pick-up operation, because when the vehicle visits vertex j,

it consumes pj units of this resource. The second resource at node j indicates the

amount of load that the vehicle can deliver after visiting j. Initially Q units are

available for this resource and the available resource decreases each time a delivery

operation is performed but it may decrease also after pick-up operations since the

maximum amount the vehicle can deliver after visiting j cannot be greater than

the maximum amount it can pick-up after visiting j. Hence both π and δ are

initialized at 0 and when a path is extended along arc (i, j) from a state (π, δ, C, i)

to a state (π′, δ′, C ′, j), the update rule for the resource consumptions π and δ is:

π′ = π + pj

δ′ = max{δ + dj, π + pj}

A state (π, δ, C, i) is feasible only if π ≤ Q and δ ≤ Q; for the formulae above the

latter condition implies the former.

Capacity and time windows. In the CVRPTW a non-negative integer ser-

vice time θi and a time window [ai, bi] are associated with each vertex i ∈ N and

each visited vertex must be reached inside its time window. If the vehicle arrives

at i before ai, it waits until time ai. The traveling time from i to j is represented

by the arc cost cij (this hypothesis has been made for simplification purposes but it

does not affect the ideas and the algorithms outlined in the remainder). In this case

time elapsed is a consumed resource, monotonically non-decreasing along the route.

In the well-known Solomon’s instances, which are commonly used as benchmarks

for routing algorithms, a capacity constraint is also considered as in the CVRP.

Hence in the corresponding RCSPP we need two resources, whose consumption is

indicated by τ and q, that are respectively the time and the capacity consumed up

to the beginning of service at each vertex. Both of them are initialized at 0 and
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each time a feasible path is extended along arc (i, j) from a state (τ, q, C, i) to a

state (τ ′, q′, C ′, j) the update rules for τ and q are:

τ ′ := max{τ + θi + cij, aj}

q′ := q + dj

A state (τ, q, C, i) is feasible only if τ ≤ bi and q ≤ Q.

4.4 Elementary path constraints

The dynamic programming algorithm described above solves the RCSPP with

pseudo-polynomial worst-case time complexity. The same algorithm can be used

to solve the RCESPP, where feasible paths are not allowed to contain cycles. To

this purpose Beasley and Christofides [43] proposed to add to the state an addi-

tional binary resource for each node i ∈ N . There is only one unit available for

each dummy resource and it is consumed when the corresponding vertex is vis-

ited. Hence I consider N resources, whose consumption is indicated by a vector

S initialized at 0. When a feasible path is extended along arc (i, j) from a state

(S, R, C, i) to a state (S ′, R′, C ′, j), the update rule for S is

S ′
k :=

{

Sk + 1 k = j

Sk k 6= j

A state (S, R, C, i) corresponds to an elementary path only if Sk ≤ 1 ∀k ∈ N .

Note that S does not keep any information about the order in which the vertices

are visited.

4.5 Dominance tests

The effectiveness of the dynamic programming algorithm outlined above heavily

relies upon the possibility of fathoming feasible states that cannot lead to the

optimal solution. To this purpose suitable dominance tests are always performed

when states are extended, so that the algorithm only records non-dominated states.

The dominance test is the following. Let (S ′, R′, C ′, i) and (S ′′, R′′, C ′′, i) be

the labels of two states associated to vertex i. Then (S ′, R′, C ′, i) dominates

(S ′′, R′′, C ′′, i) if

(a) S ′ ≤ S ′′

(b) R′ ≤ R′′

(c) C ′ ≤ C ′′
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and at least one of the inequalities is strict.

Dealing with the RCESPP arising as aprcing subproblem in branch-and-price

algorithms for the CVRPTW, Feillet et al. [8] observed that it is sometimes possible

to identify vertices which cannot be visited in any extension of a given state,

because of the resource limitations. These vertices are called unreachable. More

formally a vertex k is unreachable from state (S, R, C, i) if there exists a resource

r which is non-decreasing, obeys the triangle inequality and is such that extending

state (S, R, C, i) to vertex k would generate a state (S ′, R′, C ′, k) with R′
r exceeding

the maximum amount of available resource. This implies that vertex k cannot be

reached from (S, R, C, i) in any feasible way. In such cases it is useful to set the

consumption of the dummy resources corresponding to the unreachable vertices

to 1, as if they had already been visited. Formally, if vertex k is unreachable

from state (S, R, C, i), we can set Sk := 1. This enhancement allows the dynamic

programming algorithm to fathom a larger number of states and to reduce the

computation time.

This method can be applied to all three versions of the RCESPP considered

here, since capacity and time consumptions are non-negative and satisfy the trian-

gle inequality. In the case of multiple resources, as for the problem with distribution

and collection and the problem with capacities and time windows, all of them are

used to identify unreachable vertices.

In figure [1] I report the pseudo-code of the dynamic programming algorithm

of Feillet et al. in [8]. The notation I use is the following: Γi is the list of states

associated with vertex i; ∆+
i is the set of successors of vertex i; E is the set

of vertices to be examined; Extend(l, k) is extension procedures: it extends the

state specified as a first argument to a vertex specified as a second argument; this

procedure checks the resource constraints and produces only feasible states; finally

EFF (Γ, l) is the procedure that inserts state l into set Γ applying the domination

rules.

4.6 Bounded bi-directional dynamic programming

The dynamic programming algorithm outlined in the previous section generates

a number of states which rapidly increases with the size of the problem instance

at hand. Every time a label of vertex i is extended, it generates as many other

labels as the number of possible successors of i. Therefore in the worst case the

number of labels grows exponentially with the number of arcs in the path. States

are fathomed only when they are dominated.

I propose here two ideas, that work well together: bi-directional dynamic pro-

gramming and bounding.
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Algorithm 1 RCESPP - Mono-directional dynamic programming

// Initialization //

Γs ← {(0, 0, 0, s)}

for all i ∈ V \ {s} do

Γi ← ∅

end for

E ← {s}

// Search //

repeat

// Vertex selection //

Select i ∈ E

// Extension //

for all li = (Si, Ri, Ci, i) ∈ Γi do

for all j ∈ ∆+
i do

if Si
j = 0 then

lj ← Extend(li, j)

Γj ← EFF (Γj, lj)

if Γj has changed then

E ← E ∪ {j}

end if

end if

end for

end for

E ← E \ {i}

until E = ∅

Bi-directional dynamic programming has been sometimes considered as a useful

technique to speed-up Dijkstra’s algorithm for the computation of an s-t shortest

path on a digraph with non-negative arc weights (see [81]). In the RCESPP when

labels are propagated both forward from s to t and backward from t to s the

algorithm must examine two subsets of states whose size grows exponentially with

the number of arcs in the corresponding forward and backward paths. Due to the

exponential dependence on the number of steps, it is intuitive that exploring two

smaller sets of states may yield a significant advantage in terms of number of states

considered, provided that duplicate solutions are avoided. This is precisely the

effect of bounding, whose purpose is to limit the length of the paths corresponding

to non-dominates states.

Hereafter I formally define the bounded bi-directional dynamic programming

algorithm.
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4.6.1 Bi-directional search

In bi-directional search states are extended both forward from vertex s to its succes-

sors and backward from vertex t to its predecessors. States, recurrence equations

and domination rules are symmetrical to those presented above.

With each vertex i ∈ V are associated forward and backward states indi-

cated by (Sfw, Rfw, Cfw, i) and (Sbw, Rbw, Cbw, i), respectively. A path from s

to t is detected each time a forward state (Sfw, Rfw, Cfw, i) and a backward state

(Sbw, Rbw, Cbw, j) can be feasibly joined.

The backward cost Cbw is initialized at 0 at vertex t and whenever a back-

ward state (Sbw, Rbw, Cbw, j) is extended to a state (S
′bw, R

′bw, C
′bw, i). the cost is

updated according to the formula:

C
′bw := Cbw + cij − λi/2− λj/2

where λi = −λ0 if i = s and λj = −λ0 if j = t.

Forward and backward paths must be joined together to produce complete

s-t paths. This can be done subject to to certain feasibility conditions on the

resources. In particular a feasibility test on dummy resources S imposes that a

same vertex cannot be visited by both paths and a feasibility test on problem-

dependent resources R imposes that for each resource the consumption in the

overall path does not exceed the overall amount of available resource. Hereafter I

define the feasibility tests for each specific case considered.

Capacity. Resource consumption qbw in a backward state associated with ver-

tex j represents the amount of load picked-up at customers visited from j (included)

to t. Therefore (Sbw, qbw, Cbw, j) corresponds to an elementary backward path of

cost Cbw, originating at j, terminating at t, visiting the vertices indicated by Sbw

and consuming qbw units of capacity. Initialization and extension of backward

labels follow exactly the same rules of forward labels.

The feasibility test on the capacity for joining a forward path (Sfw, qfw, Cfw, i)

with a backward path (Sbw, qbw, Cbw, j) to produce an s-t path is

Sfw
k + Sbw

k ≤ 1 ∀k ∈ N

qfw + qbw ≤ Q

and the cost of the resulting s-t path is equal to Cfw − λi/2 + cij − λj/2 + Cbw.

Distribution and collection. Two resources, whose consumption is indicated

by πbw and δbw, are associated with each backward state. Their meaning, initializa-

tion and extension rules are symmetrical to those of forward labels: δbw indicates

the amount of load delivered between j and t and πbw indicates the maximum over-

all amount of load on board of the vehicle between j and t. When a backward path
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is extended from a state (Sbw, πbw, δbw, Cbw, j) to a state (S ′bw, π′bw, δ′bw, C ′bw, i)

along arc (i, j), the update rule is:

π′bw := max{δbw + di, π
bw + pi}

δ′bw := δbw + di

A backward path is feasible only if πbw ≤ Q and δbw ≤ Q.

The feasibility conditions to join a forward path (Sfw, πfw, δfw, Cfw, i) with a

backward path (Sbw, πbw, δbw, Cbw, j) to produce an s-t path are:

Sfw
k + Sbw

k ≤ 1 ∀k ∈ N

πfw + πbw ≤ Q

δfw + δbw ≤ Q

and the cost of the resulting s-t path is Cfw − λi/2 + cij − λj/2 + Cbw.

Capacity and time windows. In the case of time windows it is useful to

define forward and backward time windows [afw
i , bfw

i ] and [abw
i , bbw

i ] as follows:

afw
i = ai

abw
i = ai + θi

bfw
i = bi

bbw
i = bi + θi

The forward time window represents the range of feasible arrival times at node i,

while the backward time window represents the range of feasible departure times

from node i. The overall resource availability T is equal to the maximum feasible

arrival time at vertex t that is T = maxi∈V{b
fw
i + θi + cit}.

The time resource consumption τ bw in a backward path associated with vertex

j represents the time between the departure from j and the arrival at t. I also

consider a capacity resource, whose consumption in backward states is indicated

by qbw as in the RCESPP arising from the CVRP.

When a feasible backward path is extended from a state (Sbw, τ bw, qbw, Cbw, j)

to a state (S ′bw, τ ′bw, q′bw, C ′bw, i) along arc (i, j), the update rules are:

τ ′bw := max{τ bw + θj + cij, T − bbw
i }

q′bw := qbw + di

A backward path associated with vertex j is feasible only if τ bw ≤ T − abw
j and

qbw ≤ Q.

When joining a forward path (Sfw, τ fw, qfw, Cfw, i) with a backward path

(Sbw, τ bw, qbw, Cbw, j) the feasibility conditions and the cost of the resulting s-t
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path depend on the pair (i, j).

If i 6= j the conditions are:

Sfw
k + Sbw

k ≤ 1 ∀k ∈ N

τ fw + θi + cij + θj + τ bw ≤ T

qfw + qbw ≤ Q

and the cost of the resulting s-t path is Cfw − λi/2 + cij − λj/2 + Cbw.

Otherwise, if i = j, the conditions are:

Sfw
k + Sbw

k ≤ 1 ∀k ∈ N\{i}

τ fw + θi + τ bw ≤ T

qfw + qbw ≤ Q

and the cost of the resulting s-t path is Cfw + Cbw.

4.6.2 Search strategy

The set of states generated by the dynamic programming algorithm can be explored

according to different search strategies, resembling those used in branch-and-bound

algorithms. In this case each vertex has associated a number of non-dominated

states, corresponding to paths of different length; here by length I mean the number

of arcs of a path. Moreover there are both forward and backward paths when the

search is bi-directional. The effectiveness of the algorithm may depend on the order

in which the states are extended. Here I mention three possible search strategies.

Extension based on path length. This strategy resembles breadth-first

search: all paths of minimum length are extended first. Therefore the algorithm

generates all non-dominated paths of length l + 1 extending all paths of length l.

Extension based on vertices. All vertices are visited in a cyclic order and

all states associated to the same vertex are extended.

Extension based on resources. A resource r̂ is chosen, whose consumption

is monotone along the paths. Non-dominated states are sorted in non-decreasing

order of the consumption of r̂ and they are extended according to that order.

These strategies can be also mixed together, producing hybrid strategies. In

order to have a more significant comparison with the algorithm of Feillet et al.

[8], in mine implementation I adopted the extension based on vertices, where for

each vertex the states are ordered by non-decreasing resource consumption. When

examining a vertex, the algorithm extends both forward and backward states as-

sociated with it.

In figure [2] I present the pseudo-code of the bi-directional dynamic program-

ming algorithm. The notation I use is the following: Γfw
i and Γbw

i are the lists of
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forward and backward states associated with vertex i; ∆+
i and ∆−

i are the sets of

successors and predecessors of vertex i; E is the set of vertices to be examined;

Extendfw(l, k) and Extendbw(l, k) are respectively the forward and backward ex-

tension procedures: they extend the state specified as a first argument to a vertex

specified as a second argument; these procedures check the resource constraints

and produce only feasible states; finally EFF (Γ, l) is the procedure that inserts

state l into set Γ applying the domination rules.

4.6.3 Bounding

In this context bounding is used to limit the length of forward and backward paths

in order to avoid unnecessary duplications: without bounding the same s-t path

would be found twice, as a forward path from s to t and as a backward path from

t to s. The effect of bounding is to stop the extension of forward and backward

paths “at half way” between s and t so that all feasible matchings of forward and

backward paths correspond to all feasible complete s-t paths without duplications.

To stop the extension of paths we select a critical resource, whose consumption

is monotone along the paths, and we allow paths to consume at most half of the

available amount of that resource. All non-dominated states generated in this

way are recorded, in both directions. Finally all forward and backward states are

tentatively matched and checked for feasibility: this produces all feasible s-t paths.

In a branch-and-price context, when the RCESPP is solved as a pricing problem,

this procedure may be truncated when a sufficent large number of negative reduced

cost columns has been found. In any case it can provide not only the optimal

solution but a number of different columns with negative reduces cost, if they

exist, and this usually very helpful to speed-up branch-and-price algorithms.

Hereafter I describe how I chose the critical resource for each different kind of

problem.

Capacity. The critical resource in this case is obviously the only resource,

that is capacity. Forward and backward states are extended only if their associated

resource consumption value, qfw or qbw respectively, is less than Q/2, where Q is

the vehicle capacity.

Distribution and collection. In this case there are two resources; I consider

as a critical resource the sum of the resource consumptions ρfw = πfw + δfw for

forward states and ρbw = πbw + δbw for backward states and I impose the bounding

condition ρ ≤ Q in both cases.

Capacity and time windows. In this last case I consider time as the critical

resource and I impose τ fw ≤ T/2 to forward states and τ bw ≤ T/2 to backward

states.
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4.6.4 Solutions uniqueness

The last algorithmic detail I present directly comes from the need of generating

many different columns with negative reduced cost when I solve the pricing problem

in a branch-and-price framework. The bounded bi-directional dynamic program-

ming algorithm can still provide duplicate solutions: consider for instance an s-t

path including vertices i, j and k in this order. If the resource constraints are not

tight, it is possible that forward states for vertices i and j and backward states

for vertices j and k are generated. Therefore the same solution is obtainable by

joining a forward state of i with a backward state of j as well as joining a forward

state of j with a backward state of k. If only the optimal solution is sought, these

duplicates are discarded with no additional computational effort, when they are

evaluated, since they have the same cost. But if one needs to store in some data-

structure all columns with negative reduced cost, the duplicate columns cannot be

discarded on the basis of their cost and their identification may be computationally

expensive. For this reason I have devised an additional test, represented by the

function HalfWay in the pseudo-code of figure [3]. The meaning of this test is

that we accept an s-t path only when it is produced by the join of a forward state

and a backward state, for which the consumption of the critical resource is not

more than half of the overall consumption for that s-t path, that is the two states

are across the “half way point”along the s-t path. This condition must be specified

for each particular problem, as follows.

Capacity The “half-way-point”test on a pair of forward and backward states

is

qfw <= (qfw + qbw)/2

qbw < (qfw + qbw)/2

(4.1)

Distribution and collection The “half-way-point” test on a pair of forward

and backward states is

ρfw <= (ρfw + ρbw)/2

ρbw < (ρfw + ρbw)/2

(4.2)

Capacity and time windows The “half-way-point”test on a pair of forward

and backward states associated with a same vertex i is

τ fw <= (τ fw + θi + τ bw)/2

τ bw < (τ fw + θi + τ bw)/2

(4.3)
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while the test for a forward state associated with vertex i and a backward state

associated with vertex j, with i 6= j, is

τ fw + θi <= (τ fw + θi + cij + θj + τ bw)/2

τ bw + θj < (τ fw + θi + cij + θj + τ bw)/2

(4.4)

Since for each solution there is only one pair of forward and backward states

around the “half way point”, this test guarantees that each s-t path is generated

only once.

In figure [3] I present the pseudo-code for the joining procedure of the bi-

directional bounded dynamic programming algorithm. I use the following termi-

nology: Feasible(li, lj) checks the resource compatibility of states li and lj accord-

ing to problem-dependent rules; HalfWay(li, lj) checks if the s-t path obtainable

joining the two states li and lj satisfies the ”half-way-point” conditions; Save(li, lj)

saves the solution obtained from the two states li and lj;

4.7 State space relaxation for the RCESPP

State space relaxation was introduced by Christofides et al. [67] in 1981. The state

space S explored by the dynamic programming algorithm is projected onto a lower

dimensional space T so that each state in T retains the minimum cost among

those of its corresponding states in S (assuming the objective function must be

minimized). In this way the number of states to be explored is drastically reduced;

the drawback is that some original state corresponding to an infeasible solution

in S may be projected onto a state corresponding to a feasible solution in T and

therefore the search in the relaxed state space does not guarantee to find an optimal

solution but rather a lower bound.

State space relaxation has been used as a method alternative to exact opti-

mization of the pricing problem in branch-and-price algorithms for the VRP with

additional constraints (see for instance Desrochers et al. [49]): instead of the op-

timal value of the pricing problem, a lower bound is obtained. This allows faster

convergence of the column generation algorithm at the expense of a weaker lower

bound. Columns containing cycles must be eliminated through branching. Here on

the contrary I focus on the use of state space relaxation for the exact optimization

of the pricing problem by a branch-and-bound algorithm. I are not aware of any

previous attempt to use state space relaxation to this purpose.

Our state space relaxation consists of mapping each state (S, R, C, i) onto a

new state (σ, R, C, i), where σ =
∑N

k=1 Sk represents the length of the path, that is
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the number of vertices visited (excluding s). Since each component of the resource

consumption vector R may take on a finite number of values and σ can vary be-

tween 0 and N , a dynamic programming algorithm based on state space relaxation

must explore only a pseudo-polynomial number of states. ¿From the viewpoint

of complexity and computing time this makes a big difference with respect to the

exact dynamic programming algorithm in which vector S yields an exponential

number of possible states. The surrogate resource consumption σ is initialized as 0

and it is increased by one unit each time a state is extended. Since the state does

no longer keep information about the set of already visited vertices, cycles are no

longer forbidden; therefore the path is guaranteed to be feasible with respect to

the resource constraints but it is not guaranteed to be elementary.

In the state space relaxation algorithm the domination rule is modified as fol-

lows: a state (σ′, R′, C ′, i) dominates a state (σ′′, R′′, C ′′, i) only if

σ′ ≤ σ′′

R′ ≤ R′′

C ′ ≤ C ′′

and at least one of the inequalities is strict.

This state space relaxation of the RCESPP into the RCSPP can be tightened by

eliminating all cycles of length two. This is easily accomplished by a duplication of

the labels (see for instance Desrochers et al. [49]). Irnich and Villeneuve [83] have

also proposed a method to eliminate cycles of length k ≥ 3, but the computational

complexity of their method dramatically increases with k. Hence I incorporated in

our algorithms the technique to avoid cycles of length two.

The definitions above apply to both forward and backward states when bi-

directional search is employed. In such case σfw and σbw represent respectively the

number of forward extensions from s and the number of backward extensions from

t. I bound bi-directional search in the same way described above, that is on the

basis of the value of a critical resource.

When bounded bi-directional search is coupled with state space relaxation the

join of forward and backward paths becomes critical: both the forward path and the

backward path to be joined may contain cycles; moreover a cycle can be produced

by the join, even if the two paths are elementary. These two cases are illustrated

in figure 4.1. In addition there may be many different ways to join forward and

backward paths providing the same solution. The former issue is addressed in

the next section, where branching strategies are illustrated; the latter is addressed

hereafter.
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Figure 4.1: an s-t path made of non-elementary paths s-i and j-t.
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Figure 4.2: a non-elementary s-t path made of elementary paths s-i and j-t.

4.7.1 Paths join and solutions uniqueness

The bounded bi-directional dynamic programming algorithm can provide duplicate

solutions: consider for instance an s-t path including vertices i, j and k in this order.

If the constraint on the critical resource is not tight, it is possible that forward

states for vertices i and j and backward states for vertices j and k are generated.

Therefore the same s-t path can be obtained by joining a forward state of i with a

backward state of j as well as joining a forward state of j with a backward state of

k. This unpleasant phenomenon can be avoided with an additional test: we accept

an s-t path only when it is produced by the join of a forward state and a backward

state, for which the forward and backward consumptions of the critical resource

are as close as possible to half the overall consumption for that s-t path, that is the

two states are as close as possible to the “half way point” along the s-t path. Let

rfw and rbw be the critical resource consumptions in forward and backward paths.

Among all possible pairs of forward and backward states producing the same s-t

path we choose the one for which φ = |rfw − rbw| is minimum. The test is done

in constant time for each candidate pair of states, since the position closest to the

“half-way point” is detected by direct comparison with the next position along

the path if rfw < rbw and with the previous position if rfw > rbw. In case of tie

between two positions for which φ is minimum, we choose the one with rfw > rbw.

This test guarantees that each s-t path is generated only once.

4.7.2 Solving the RCESPP with state space relaxation and

Branch-and-bound

In this section I describe a branch-and-bound algorithm which solves the RCE-

SPP to optimality, exploiting the RCSPP lower bound given by the bounded bi-
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directional dynamic programming algorithm with state space relaxation. In section

4.7.3 I describe the branching policies needed to eliminate cycles: every time the

optimal solution of the RCSPP is not elementary, the current node of the search

tree is replaced by children nodes in which some additional constraints are added

to the RCSPP.

Search policy. The search policy I use to explore the branch-and-bound tree

is best-first, that is the open nodes of the tree are ranked according to the value of

their associated lower bound and the most promising node is explored first.

Upper bounding. At each node of the branch-and-bound tree and at each

iteration of the column generation algorithm a feasible solution is computed with

a nearest neighbor heuristic. Starting from the depot s the most convenient vertex

among the feasible ones is chosen until the path reaches t. For a vertex to be

feasible we check that no resource constraint is exceeded and the vertex have not

been visited yet. At each vertex i the algorithm chooses the next feasible vertex j

such that

j = argmink{cik − λk}

4.7.3 Branching strategies

I present three different ways to perform branching, namely branching on cycles,

branching on arcs and branching on resources. Our algorithm uses hybrid branch-

ing strategies in which all these techniques are exploited.

Branching on cycles. First we determine the minimum length cycle in the

optimal RCSPP solution. Then k children nodes are generated, where k is the

length of the cycle, that is the number of arcs traversed between two visits to the

same vertex: at child node h = 0, . . . , k − 1 we fix the first h arcs of the cycle and

we forbid the h + 1-th arc. I experimentally observed that, forbidding cycles of

length 2, k was very often equal to 3.

Branching on arcs. This binary branching scheme consists of selecting a

vertex entered or left by more than one arc in the RCSPP solution. One of these

arcs is then fixed in one child node and forbidden in the other.

Branching on resources. When the optimal solution of the RCSPP has a

cycle, there exists at least one vertex ı̂ that is visited more than once. The branch-

ing strategy consists of adding a constraint on the quantity of critical resource

consumed up to the visit of vertex ı̂. This idea was proposed by Gélinas et al. [82]

for routing problems with time windows and it can be adapted to any problem

with a critical resource whose consumption r is strictly monotone along the path.
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Given a branching vertex ı̂, let r′ and r′′ the two values of resource consumption in

two states associated with ı̂ with r′ < r′′. Then an integer value r̄ is chosen such

that r′ < r̄ ≤ r′′. Two children nodes are generated imposing that the value of r

at vertex ı̂ satisfies r ≥ r in one child node and r ≤ r − 1 in the other.

It is remarkable that the dynamic programming algorithm that computes the

lower bound can easily take into account the constraints imposed by all branching

techniques. In particular fixing and forbidding arcs is easy to take into account

at children nodes: when arc (i, j) is forbidden, it is deleted from the graph; when

arc (i, j) is fixed, all arcs leaving i and all arcs entering j, excepted arc (i, j), are

deleted from the graph.

The consequence of branching on the critical resource is that each vertex has

an associated window [ar, br] of feasible values for the critical resource; when a

path reaches that vertex with a critical resource consumption less than ar, the

consumption is set to ar; when it reaches the vertex with a critical resource con-

sumption greater than br, it is declared infeasible and it is discarded. This rule can

be applied to both forward and backward states, with different resource windows

for constraining forward and backward consumptions.

I obtained the best results when I employed hybrid branching strategies in our

branch-and-bound algorithm. If either the forward path or the backward path

forming the optimal RCSPP solution contains a cycle, I branch on the critical

resource: I choose for branching the first vertex visited more than once which is

encountered moving along the forward (resp. backward) path from s to t (resp.

from t to s); I consider r′ and r′′ as the resource consumptions at the first (resp.

last) two visits of the branching vertex and I choose r̄ = d r′+r′′

2
e. If the forward

and the backward paths are both elementary but a cycle is generated by their join,

I branch on arcs or cycles. When I branch on arcs, the branching vertex is the first

vertex visited more than once which is encountered when moving along the path

from the half way point forward.

I could not observe a clear domination between the hybrid branching strategies

on resource/arcs and resource/cycles.

4.8 Decremental state space relaxation

The exact dynamic programming algorithm forbids multiple visits for each vertex,

while the algorithm with state space relaxation does not. I pursued a compromise

between these two extreme cases by the following idea: some vertices are identified

as critical, according to the structure of the optimal RCSPP solution obtained with

state space relaxation. Let Θ indicate the set of critical vertices at the current it-

eration. In the subsequent iteration the dynamic programming algorithm prevents
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multiple visits the vertices in Θ, still allowing multiple visits to the others. This

is easily accomplished by extending the state space relaxation labels with a binary

vector SΘ playing the same role as S in exact dynamic programming. The size of

SΘ is however restricted only to the critical vertices. When SΘ contains all the ver-

tices the algorithm is equivalent to exact dynamic programming; when SΘ is empty

it is equivalent to the algorithm with state space relaxation. Therefore I indicate

this algorithm by decremental state space relaxation (DSSR). The algorithm is

run iteratively: every time it produces an optimal solution with cycles, the vertices

visited more than once are marked as critical and the algorithm restarts. Let Ψ

the set of vertices visited more than once in the optimal solution computed by the

DSSR algorithm. If Ψ is not empty, then another iteration is performed with a set

of critical vertices equal to Θ′ = Θ∪Ψ. Hence the set of critical vertices is enlarged

at each iteration and eventually the algorithm provides the optimal solution to the

RCESPP without having recourse to branching. I report hereafter the pseudo-

code of the decremental state space relaxation algorithm. where SΘ is the vector

of dummy resources associated to the critical vertices; procedure MultipleV isits

returns the set Ψ of vertices visited more than once in the current optimal path.

4.9 Experimental Results

I derived the benchmark instances for the RCESPP from Solomon’s dataset [61].

For each kind of RCESPP problem I tested the algorithms on two classes of in-

stances obtained from Solomon’s instances by considering the first 50 and 100

nodes. These datasets are divided into random, clustered and random-clustered

categories, according to the displacement of the customers. Instances belonging to

the same dataset have the customers located in the same way and with the same

delivery requests; the instances differ only for the time windows.

When solving the RCESPP with capacities I considered one instance taken from

each one of the three Solomon’s testsets, I kept the original customer locations and

demands and I neglected the time windows. Then I derived from each original

instance 10 RCESPP instances with 50 nodes and 10 RCESPP instances with 100

nodes. In both cases the vehicle capacity varies from 10 to 100 with an increasing

step of 10.

For the RCESPP with distribution and collection I kept the original delivery

requests and I derived the pickup requests as follows: pi = b0.8dic if i is odd and

pi = b1.2dic if i is even. I varied the capacity as in the previous case.

Finally, for the RCESPP with capacities and time windows I considered the

original instances of Solomon’s dataset.

In addition I defined another dataset built on the difficult Solomon’s instance
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c 104; I kept the original starting times of the time windows, ai, and I set the end

times as follows: bi = ai + (1 + γ)θi for γ = 0.25 ∗ k and k = 0, . . . , 24, where θi is

the original service time at vertex i.

I generated the dual variables λi as random integer variables uniformly dis-

tributed in {0, . . . , 20}. I set the limit to 20, as proposed by [8], in order to have

a reasonable number of negative arcs. I rounded up all the Euclidean distances

between customers to one decimal point values in order to mantain the triangle

inequality.

All tests were performed on a PC equipped with a PentiumIV 1.6GHz processor

with 512Mb RAM. The algorithms have been coded in ANSI-C and compiled with

gcc 3.0.4.

Tables 4.1 to 4.8 report on the experimental comparison between the mono-

directional dynamic programming algorithm, the bi-directional algorithm without

bounds and the bi-directional algorithm with bounds. For each algorithm I report

the total number of non-dominated states generated at the end of the extension

procedure and the time needed to compute the optimal path. Empty cells mean

that the solution has not been computed within the time limit of one hour.

Capacities. Results reported in Tables 4.1 and 4.2 show that the bi-

directional algorithm with bounds definitely outperforms the other two on all in-

stances. For the loosely constrained instances it reduces the computing time by one

order of magnitude and it reduces significantly the number of non-dominated states.

The bi-directional algorithm without bounds outperforms the mono-directional al-

gorithm only on c-instances, it has comparable performances on rc-instances and

it is more time-consuming on r-instances. This indicates that its performances are

more dependent on the structure of the cost matrix than the resource availability.

For 100 nodes instances one should notice that the space and the time complexity

grow very rapidly for all three algorithms. However the bounded bi-directional

algorithm solves more and larger instances than the mono-directional algorithm

and it reduces the computing time by an order of magnitude.

Distribution and collection. When solving the RCESPP with distribution

and collection I obtained results similar to those above: the results are reported in

Tables 4.3 and 4.4. The bounded bi-directional algorithm solved all instances with

50 nodes in less than 320 seconds and it failed to solve 6 instances with 100 nodes.

Capacities and time windows. All but one of Solomon’s instances with

50 and 100 nodes were solved by the bounded bi-directional algorithm as reported

in Tables 4.5 and 4.6. The superiority of the bounded bi-directional algorithm is

quite evident and systematic.

Tightness of the constraints.
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Table 4.1: RCESPP with capacity - 50 vertices

Instance Monodirectional Bidirectional Bidirectional + Bounding

Name Labels Time Labels Time Labels Time

c101 50 01 30 0.00 56 0.00 56 0.00

c101 50 02 104 0.00 118 0.00 268 0.00

c101 50 03 311 0.01 530 0.01 692 0.00

c101 50 04 885 0.05 1169 0.03 2574 0.03

c101 50 05 2593 0.28 3924 0.12 4692 0.07

c101 50 06 8707 2.47 10926 1.07 15236 0.91

c101 50 07 30973 26.30 30612 5.16 23394 1.75

c101 50 08 111814 287.50 87141 54.77 75026 20.35

c101 50 09 393680 3240.86 203586 194.61 101128 33.24

c101 50 10 574981 2217.46 331402 394.97

c101 50 11 430032 615.10

r101 50 01 40 0.00 62 0.00 62 0.00

r101 50 02 135 0.00 225 0.01 210 0.01

r101 50 03 312 0.00 562 0.02 525 0.01

r101 50 04 652 0.04 1196 0.06 1250 0.02

r101 50 05 1345 0.09 2566 0.17 2418 0.05

r101 50 06 2868 0.24 5513 0.44 4570 0.11

r101 50 07 6296 0.77 12184 1.35 7874 0.24

r101 50 08 14226 2.91 27188 4.80 13590 0.60

r101 50 09 32561 12.25 62306 20.64 22800 1.49

r101 50 10 73456 52.40 143040 97.54 36838 3.87

r101 50 11 159720 225.74 306718 409.13 59911 10.15

rc101 50 01 21 0.00 42 0.00 44 0.00

rc101 50 02 87 0.00 103 0.00 124 0.00

rc101 50 03 164 0.00 250 0.00 268 0.00

rc101 50 04 302 0.01 421 0.02 560 0.01

rc101 50 05 511 0.02 810 0.04 800 0.01

rc101 50 06 876 0.05 1367 0.07 1551 0.03

rc101 50 07 1331 0.10 2246 0.14 1774 0.04

rc101 50 08 2038 0.18 3346 0.23 3217 0.08

rc101 50 09 3115 0.35 5134 0.42 3322 0.09

rc101 50 10 4846 0.67 7710 0.74 5864 0.19

rc101 50 11 7740 1.62 12442 1.53 6050 0.22
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Algorithm 2 RCESPP - Bi-directional dynamic programming

// Initialization //

Γfw
s ← {(0, 0, 0, s)}

Γbw
t ← {(0, 0, 0, t)}

for all i ∈ V \ {s} do

Γfw
i ← ∅

end for

for all i ∈ V \ {t} do

Γbw
i ← ∅

end for

E ← {s, t}

// Search //

repeat

// Vertex selection //

Select i ∈ E

// Forward extension //

for all li = (Si, Ri, Ci, i) ∈ Γfw
i do

for all j ∈ ∆+
i such that Si

j = 0 do

lj ← Extendfw(li, j)

Γfw
j ← EFF (Γfw

j , lj)

if Γfw
j has changed then

E ← E ∪ {j}

end if

end for

end for

// Backward extension //

for all li = (Si, Ri, Ci, i) ∈ Γbw
i do

for all k ∈ ∆−
i such that Si

k = 0 do

lk ← Extendbw(li, k)

Γbw
k ← EFF (Γbw

k , lk)

if Γbw
k has changed then

E ← E ∪ {k}

end if

end for

end for

E ← E \ {i}

until E = ∅

// Join between forward and backward paths //

Join
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Algorithm 3 RCESPP - Bi-directional dynamic programming: Join

for all i ∈ V do

for all li = (Sfw, Rfw, Cfw, i) ∈ Γfw
i do

for all j ∈ V do

for all lj = (Sbw, Rbw, Cbw ∈ Γbw
j do

if Cfw − λi/2 + cij − λj/2 + Cbw < 0 then

if Feasible(li, lj) AND HalfWay(li, lj) then

Save(li, lj)

end if

end if

end for

end for

end for

end for

Table 4.2: RCESPP with capacity - 100 vertices

Instance Monodirectional Bidirectional Bidirectional + Bounding

Name Labels Time Labels Time Labels Time

c101 100 01 55 0.00 106 0.00 106 0.00

c101 100 02 205 0.01 237 0.01 559 0.01

c101 100 03 640 0.09 1084 0.04 1456 0.03

c101 100 04 2136 0.41 2765 0.24 5900 0.19

c101 100 05 7056 2.49 9396 0.86 11546 0.44

c101 100 06 26135 21.87 29153 7.51 45138 6.60

c101 100 07 116247 327.42 81488 30.36 75698 13.78

c101 100 08 294184 517.75 310651 276.88

c101 100 09 4799333 520.82

c101 100 10

r101 100 01 163 0.00 248 0.01 266 0.00

r101 100 02 1076 0.09 1946 0.16 2120 0.06

r101 100 03 5106 1.24 9508 2.25 11866 0.70

r101 100 04 25613 19.59 47792 34.46 53668 8.37

r101 100 05 133007 417.56 249482 684.78 215976 104.41

r101 100 06 764476 1300.33

r101 100 07

r101 100 08

r101 100 09

r101 100 10

rc101 100 01 21 0.00 43 0.00 90 0.00

rc101 100 02 257 0.01 428 0.02 636 0.01

rc101 100 03 705 0.06 1308 0.13 1732 0.04

rc101 100 04 1857 0.28 3506 0.55 5706 0.23

rc101 100 05 5024 1.20 9760 2.33 12561 0.69

rc101 100 06 14260 5.86 27968 11.55 29786 2.80

rc101 100 07 40375 31.40 78906 59.59 60499 9.74

rc101 100 08 111591 181.25 219142 351.14 124752 37.46

rc101 100 09 299056 1086.05 585850 2083.42 237652 130.20

rc101 100 10 459269 470.24
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Algorithm 4 RCESPP - Decremental state space relaxation

// Initialization //

Ψ← ∅

Θ← ∅

repeat

Θ← Θ ∪ Ψ

Γfw
s ← {(0, 0, 0, s)}

Γbw
t ← {(0, 0, 0, t)}

for all i ∈ V \ {s} do Γfw
i ← ∅

for all i ∈ V \ {t} do Γbw
i ← ∅

E ← {s, t}

// Search //

repeat

// Vertex selection //

Select i ∈ E

// Forward extension //

for all li = (Si
Θ, Ri, Ci, i) ∈ Γfw

i do

for all j ∈ ∆+
i such that j /∈ Θ or Si

j = 0 do

lj ← Extendfw(li, j)

Γfw
j ← EFF (Γfw

j , lj)

if Γfw
j has changed then E ← E ∪ {j}

// Backward extension //

for all li = (Si
Θ, Ri, Ci, i) ∈ Γbw

i do

for all k ∈ ∆−
i such that k /∈ Θ or Si

k = 0 do

lk ← Extendbw(li, k)

Γbw
k ← EFF (Γbw

k , lk)

if Γbw
k has changed then E ← E ∪ {k}

E ← E \ {i}

until E = ∅

// Join between forward and backward paths //

for all i ∈ V

for all li = (Si, T i, Ci, i) ∈ Γfw
i

for all j ∈ V

for all lj = (Sj, T j, Cj, j) ∈ Γbw
j

if Feasible(li, lj) and HalfWay(li, lj)

then Save(li, lj)

// Search for vertices visited more than once //

Ψ←MultipleV isits()

until Ψ = ∅
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Table 4.3: RCESPP with distribution and collection - 50 vertices

Instance Monodirectional Bidirectional Bidirectional + Bounding

Name Labels Time Labels Time Labels Time

c101 50 01 25 0.00 26 0.00 26 0.00

c101 50 02 191 0.00 159 0.00 159 0.00

c101 50 03 1127 0.01 654 0.00 554 0.01

c101 50 04 4788 0.19 2915 0.03 1751 0.02

c101 50 05 21420 4.30 7882 0.17 4675 0.07

c101 50 06 88706 79.75 27123 3.10 11311 0.41

c101 50 07 346218 1201.05 58244 9.91 24006 1.72

c101 50 08 194732 156.31 51401 7.95

c101 50 09 384974 436.79 110354 35.46

c101 50 10 233478 165.21

c101 50 11 474147 672.29

r101 50 01 51 0.00 61 0.00 59 0.00

r101 50 02 207 0.01 208 0.01 188 0.00

r101 50 03 633 0.01 1089 0.02 486 0.01

r101 50 04 1910 0.04 3329 0.07 1113 0.02

r101 50 05 5338 0.23 9593 0.38 2085 0.04

r101 50 06 13925 1.53 23545 2.07 3882 0.10

r101 50 07 34947 9.65 57109 11.75 6986 0.23

r101 50 08 83238 52.00 127163 56.77 12138 0.51

r101 50 09 188997 257.86 276646 245.08 20384 1.23

r101 50 10 410572 1695.94 405789 1420.66 33107 3.15

r101 50 11 55835 8.19

rc101 50 01 23 0.00 24 0.00 24 0.00

rc101 50 02 96 0.00 83 0.00 83 0.00

rc101 50 03 231 0.01 216 0.00 199 0.01

rc101 50 04 511 0.01 531 0.01 397 0.01

rc101 50 05 1104 0.02 1230 0.02 764 0.02

rc101 50 06 2080 0.07 2265 0.05 1108 0.02

rc101 50 07 3797 0.19 4167 0.11 1817 0.03

rc101 50 08 6807 0.63 6905 0.25 2546 0.05

rc101 50 09 12367 2.17 11690 0.61 3435 0.10

rc101 50 10 22823 7.55 20541 2.21 4998 0.15

rc101 50 11 42162 25.40 35904 6.56 6213 0.23
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Table 4.4: RCESPP with distribution and collection - 100 vertices

Instance Monodirectional Bidirectional Bidirectional + Bounding

Name Labels Time Labels Time Labels Time

c101 100 01 47 0.00 48 0.00 48 0.00

c101 100 02 382 0.00 328 0.01 328 0.00

c101 100 03 2415 0.08 1348 0.01 1179 0.02

c101 100 04 13009 1.42 6409 0.20 3829 0.08

c101 100 05 83462 49.91 17473 0.89 11112 0.41

c101 100 06 520592 1999.57 75587 17.39 30823 2.62

c101 100 07 171868 57.81 76548 12.72

c101 100 08 770885 1902.60 197386 87.88

c101 100 09 509042 516.42

c101 100 10

r101 100 01 245 0.01 310 0.00 253 0.00

r101 100 02 3688 0.21 6208 0.30 1948 0.06

r101 100 03 43242 20.67 69800 26.2000 10874 0.68

r101 100 04 409513 1806.75 636444 1943.60 49258 7.34

r101 100 05 189041 84.00

r101 100 06 676338 1040.25

r101 100 07

r101 100 08

r101 100 09

r101 100 10

rc101 100 01 72 0.00 85 0.00 67 0.00

rc101 100 02 401 0.00 641 0.01 501 0.01

rc101 100 03 1950 0.07 3477 0.12 1422 0.04

rc101 100 04 8290 0.70 15362 1.27 4540 0.17

rc101 100 05 32216 8.19 57397 13.31 10790 0.55

rc101 100 06 117793 98.23 202545 141.49 25657 2.29

rc101 100 07 418620 1109.78 643159 1267.20 52378 7.73

rc101 100 08 107414 28.62

rc101 100 09 207049 99.56

rc101 100 10
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Table 4.5: RCESPP with capacity and time windows - 50 vertices

Instance Monodirectional Bidirectional Bidirectional + Bounding

Name Labels Time Labels Time Labels Time

c101 50 524 0.02 808 0.04 323 0.01

c102 50 4548 0.93 5822 0.66 3026 0.14

c103 50 106795 393.47 58868 49.32 30736 10.25

c104 50

c105 50 609 0.03 892 0.05 435 0.02

c106 50 565 0.03 826 0.04 359 0.01

c107 50 652 0.04 941 0.06 504 0.02

c108 50 1019 0.07 1525 0.12 736 0.04

c109 50 2255 0.22 3399 0.34 2031 0.15

r101 50 166 0.00 344 0.01 121 0.00

r102 50 663 0.03 1577 0.06 596 0.02

r103 50 2546 0.16 5859 0.37 2322 0.06

r104 50 32697 10.55 47780 11.86 15441 0.66

r105 50 344 0.01 625 0.01 238 0.01

r106 50 970 0.04 2184 0.10 818 0.02

r107 50 3457 0.24 7638 0.55 2784 0.08

r108 50 34460 12.36 50473 13.84 16457 0.75

r109 50 683 0.03 1235 0.05 584 0.02

r110 50 2003 0.12 3600 0.22 1600 0.04

r111 50 2571 0.19 5156 0.35 2289 0.07

r112 50 4552 0.39 9153 0.74 3987 0.12

rc101 50 386 0.01 845 0.01 270 0.00

rc102 50 1368 0.04 2990 0.08 906 0.01

rc103 50 4788 0.42 10217 0.83 3509 0.07

rc104 50 12805 3.47 27732 6.92 8801 0.28

rc105 50 1208 0.03 2654 0.08 937 0.01

rc106 50 1194 0.04 2587 0.07 889 0.01

rc107 50 5380 0.31 9894 0.57 3525 0.07

rc108 50 12780 2.29 24967 3.31 10166 0.21
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Table 4.6: RCESPP with capacity and time windows - 100 vertices

Instance Monodirectional Bidirectional Bidirectional + Bounding

Name Labels Time Labels Time Labels Time

c101 100 994 0.16 1658 0.31 679 0.06

c102 100 18126 22.53 23422 16.82 11839 2.99

c103 100 123804 133.56

c104 100

c105 100 1149 0.23 1839 0.43 915 0.11

c106 100 1448 0.37 2609 0.70 1159 0.16

c107 100 1225 0.31 1960 0.58 1058 0.16

c108 100 2094 0.64 3643 1.24 1690 0.33

c109 100 4739 2.03 7962 3.48 4608 1.28

r101 100 746 0.04 1474 0.10 452 0.01

r102 100 36969 49.66 109340 169.09 14792 2.21

r103 100 135575 95.73

r104 100 655858 1242.56

r105 100 2191 0.21 4524 0.48 1161 0.06

r106 100 52182 126.21 8712 420.03 22970 5.52

r107 100 138027 100.83

r108 100 570910 891.81

r109 100 6389 1.35 12914 2.76 3504 0.37

r110 100 39042 47.09 88069 109.33 25063 4.89

r111 100 69890 25.86

r112 100 394702 647.36

rc101 100 1196 0.09 2954 0.2100 955 0.03

rc102 100 8268 1.73 23405 5.2500 5384 0.30

rc103 100 76457 100.67 38308 6.01

rc104 100 232961 148.73

rc105 100 3253 0.45 9522 1.18 2964 0.15

rc106 100 3130 0.44 8675 1.12 2574 0.12

rc107 100 14224 3.56 36463 11.74 10505 0.72

rc108 100 57637 46.54 150081 151.20 45430 6.75
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Table 4.7: RCESPP with capacity and time windows - c 104, 50 vertices

Instance Monodirectional Bidirectional Bidirectional + Bounding

Name Labels Time Labels Time Labels Time

c104 50 01 96 0.00 260 0.01 59 0.00

c104 50 02 166 0.00 494 0.00 126 0.00

c104 50 03 246 0.01 1224 0.03 200 0.01

c104 50 04 257 0.01 1739 0.08 206 0.01

c104 50 05 271 0.01 1876 0.13 208 0.01

c104 50 06 370 0.01 1980 0.14 269 0.01

c104 50 07 614 0.02 3379 0.20 475 0.01

c104 50 08 730 0.04 5744 0.52 586 0.04

c104 50 09 871 0.05 8822 1.56 730 0.05

c104 50 10 991 0.07 8977 1.79 804 0.06

c104 50 11 1751 0.11 11861 2.43 1440 0.09

c104 50 12 2664 0.23 18914 6.74 2292 0.21

c104 50 13 4158 0.48 36920 18.66 3771 0.43

c104 50 14 4495 0.58 41282 22.38 4031 0.53

c104 50 15 6257 0.93 44915 24.33 5508 0.74

c104 50 16 10426 2.55 55163 40.70 9411 2.10

c104 50 17 20072 6.01 140626 282.45 18579 5.02

c104 50 18 23086 7.52 167141 342.34 21738 6.54

c104 50 19 27539 11.12 179777 364.69 25638 9.25

c104 50 20 39652 27.11 36762 23.16

c104 50 21 89920 97.87 81804 73.19

c104 50 22 112830 136.46 105756 110.25

c104 50 23 135902 189.24 126645 149.81

c104 50 24 170507 350.34 157915 275.93

c104 50 25 323641 1016.98
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Table 4.8: RCESPP with capacity and time windows - c 104, 100 vertices

Instance Monodirectional Bidirectional Bidirectional + Bounding

Name Labels Time Labels Time Labels Time

c104 100 01 199 0.00 554 0.03 160 0.01

c104 100 02 299 0.02 842 0.04 227 0.01

c104 100 03 447 0.03 2198 0.13 368 0.02

c104 100 04 495 0.05 3280 0.38 415 0.04

c104 100 05 510 0.05 3622 0.72 427 0.05

c104 100 06 698 0.07 4070 0.99 523 0.06

c104 100 07 1121 0.13 6585 1.45 895 0.11

c104 100 08 1416 0.23 11646 3.17 1153 0.19

c104 100 09 1685 0.36 18558 6.86 1393 0.29

c104 100 10 1882 0.44 20809 9.28 1557 0.37

c104 100 11 3105 0.71 26550 13.40 2655 0.59

c104 100 12 5122 1.43 43049 33.17 4504 1.24

c104 100 13 8168 2.74 85440 93.45 7336 2.37

c104 100 14 9244 3.74 112634 146.83 8457 3.30

c104 100 15 12088 5.22 130779 187.82 10932 4.49

c104 100 16 20841 11.40 172844 350.95 19133 9.75

c104 100 17 42948 28.64 39114 23.83

c104 100 18 56769 45.05 53650 39.11

c104 100 19 69921 65.26 66165 56.43

c104 100 20 96971 125.26 91825 110.71

c104 100 21 197498 336.64

c104 100 22 315475 702.11

c104 100 23 437113 1169.71

c104 100 24 547902 1945.73

c104 100 25
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Figure 4.3: Number of states for increasing capacity

Tables, 4.7 and 4.8, show that the difficulty of a RCESPP instance does not

depend only on its size but it is strongly affected by the tightness of the constraints.

When time windows become larger and larger, the number of non-dominated states

increases dramatically and irregularly. The irregular growth in number of states

and computing time is due to the local nature of the time windows constraints. Also

in these experiments the superiority of bounded bi-directional dynamic program-

ming is outstanding and it is worth remarking that bi-directional search without

bounding is inferior to the classical mono-directional algorithm.

Figures 4.3 and 4.4 show similar results: they plot the number of states and the

computing time for instances of the RCESPP with capacities, for increasing values

of the capacity of the vehicle. All three algorithms show an exponential behaviour

when the resource availability grows. Here the growth is more regular because the

capacity constraint is a global one.

Tables 4.9 to 4.16 report on the experimental comparison between the elemen-

tary bi-directional algorithm with bounds, the state space relaxation algorithm

coupled with branch-and-bound and the decremental state space algorithm. For

the elementary bi-directional algorithm with bounds, named Elementary D.P. in

the tables, I report the total number of non-dominated labels and the computing

time; for the state space relaxation algorithm with branch-and-bound I report the

total number of nodes of the search tree, the computing time and the percentage

gap between the upper and the lower bounds for the case of hybrid branching based
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Figure 4.4: Computing time for increasing capacity

on resources+arcs and for the case based on resources+cycles; for the decremental

state space algorithm, named SSR + C.V., I report the number of iterations (that

is the number of times that the state space algorithm has been invoked), the num-

ber of critical nodes for the last iteration and the computing time. Empty cells

mean that the solution has not been computed within the time limit of one hour.

Capacities. Results reported in Tables 4.9 and 4.10 show that for 50

vertices instances the decremental state space algorithm clearly outperforms all

other algorithms for all classes of instances except for the rc-class; however it

should be pointed out that for this class the computing times are all below 1

second. The B&B algorithm (with both branching rules) sometimes dominates

the exact D.P. but often it is not able to converge within reasonable computing

time. For 100 vertices instances, where the exponential behaviour of the exact

D.P. become evident, the decremental state space relaxation algorithm reduces the

computing time by 2 orders of magnitude in some cases. The B&B algorithm can

be compared with the exact D.P. and the branching strategy with cycles seems to

be preferable. However B&B fails to converge within one hour for 6 instances.

Distribution and collection. When solving the RCESPP with distribution

and collection I obtained results similar to those above: the results are reported

in Tables 4.11 and 4.12. The decremental state space relaxation algorithm solved

all instances in less than 340 seconds outperforming the other algorithms and

reducing the computing time by 2 orders of magnitude. The B&B is useful only
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for 100 vertices instances where the performances are somewhat better for the

resource+cycles branching.

Capacities and time windows. All Solomon’s instances with 50 and 100

nodes were solved by the decremental state space relaxation algorithm; the most

difficult instance, c 104, has been solved within 350 seconds. For the other original

Solomon’s instances the state space based algorithms are not very competitive,

because of the tightness and the displacement of the time windows.

Tightness of the constraints. The last two tables, 4.15 and 4.16, show

that the difficulty of a RCESPP instance does not depend only on its size but

it is strongly affected by the tightness of the constraints. When time windows

become larger and larger, the number of non-dominated states and the computing

time increase. The growth in number of states and computing time is due to the

local nature of the time windows constraints. In these experiments the superiority

of state space relaxation based algorithms is evident. Both the B&B and the

decremental state space relaxation solved all instances within 50 seconds where

the exact D.P. failed. DSSR slightly dominates the B&B. It should be pointed out

that the actual implementation of the state space relaxation algorithms does not

consider reoptimization as proposed by Desrochers and Soumis [47]. Future work

should be done in this direction.

4.10 Conclusions

In this chapter I proposed some improving techniques for dynamic programming

algorithms based on bi-directional search, state space relaxation based on branch

and bound and decremental state space relaxation, for the exact optimization of

resource constrained shortest path problem derived from the set covering reformula-

tion of three vehicle routing problems: CVRP, VRPDC, CVRPTW. For the pricing

problem I have shown how bounded bi-directional dynamic programming can be

applied to the RCESPP with different resource constraints, namely the RCESPP

with one or more resource constraints, interacting or independent resources, local

or global constraints, and resource consumptions depending on visited vertices or

traversed arcs. The experiments show that bounded bi-directional dynamic pro-

gramming definitely outperforms the mono-directional algorithm, commonly used

and reported in the literature. The experimental comparison on the RCESPP of

the exact methods with those based on state space relaxation is favourable to decre-

mental state space relaxation. In the next chapters I analyze their performances

when embedded in a Branch-and-Price algorithm.
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Table 4.9: RCESPP with capacity - 50 vertices

Instance Exact D.P. Resources + Arcs Resource + Cycles DSSR

Name Labels Time Nodes Time Gap Nodes Time Gap Iter C.N. Time

c 50 01 56 0.00 1 0.00 0.0 1 0.00 0.0 1 0 0.00

c 50 02 268 0.00 1 0.00 0.0 1 0.00 0.0 1 0 0.00

c 50 03 692 0.00 7 0.01 0.0 1 0.00 0.02 1 0 0.00

c 50 04 2574 0.03 19 0.08 0.0 10 0.05 0.0 3 2 0.02

c 50 05 4692 0.07 11 0.05 0.0 22 0.09 0.0 2 2 0.01

c 50 06 15236 0.91 87 0.48 0.0 116 0.91 0.0 3 3 0.04

c 50 07 23394 1.75 35 0.24 0.0 52 0.33 0.0 2 3 0.02

c 50 08 75026 20.35 315 3.19 0.0 124 1.81 0.0 5 7 0.25

c 50 09 101128 33.24 673 5.80 0.0 224 1.78 0.0 4 8 0.18

c 50 10 331402 394.97 3919 44.56 0.0 3039 53.34 0.0 5 10 1.82

c 50 11 430032 615.10 140517 1.4 38508 604.12 0.0 6 14 17.58

r 50 01 62 0.00 1 0.00 0.0 1 0.00 0.0 1 0 0.00

r 50 02 210 0.01 1 0.01 0.0 1 0.00 0.0 1 0 0.00

r 50 03 525 0.01 7 0.04 0.0 1 0.00 0.0 3 3 0.02

r 50 04 1250 0.02 7 0.06 0.0 1 0.00 0.0 2 3 0.02

r 50 05 2418 0.05 591 6.64 0.0 7 0.09 0.0 6 7 0.17

r 50 06 4570 0.11 271 4.49 0.0 83 1.18 0.0 4 6 0.12

r 50 07 7874 0.24 6009 90.34 0.0 122 1.12 0.0 2 4 0.06

r 50 08 13590 0.60 3149 38.75 0.0 95 0.98 0.0 5 11 0.48

r 50 09 22800 1.49 191 6.12 0.0 17 0.53 0.0 4 9 0.40

r 50 10 36838 3.87 59 1.16 0.0 7 0.26 0.0 3 8 0.34

r 50 11 59911 10.15 4991 207.70 0.0 128 2.64 0.0 4 8 0.65

rc 50 01 44 0.00 1 0.00 0.0 1 0.00 0.0 1 0 0.00

rc 50 02 124 0.00 1 0.00 0.0 1 0.00 0.0 1 0 0.00

rc 50 03 268 0.00 11 0.02 0.0 1 0.01 0.0 4 3 0.00

rc 50 04 560 0.01 725 1.58 0.0 73 0.17 0.0 5 4 0.02

rc 50 05 800 0.01 1573 4.21 0.0 173 0.42 0.0 4 4 0.02

rc 50 06 1551 0.03 73573 562.40 0.0 1774 8.29 0.0 7 8 0.09

rc 50 07 1774 0.04 3417 19.66 0.0 84 0.50 0.0 4 7 0.05

rc 50 08 3217 0.08 239467 6.25 10505 49.19 0.0 7 11 0.20

rc 50 09 3322 0.09 29021 348.97 0.0 960 7.68 0.0 6 11 0.20

rc 50 10 5864 0.19 254931 2.0 16679 156.19 0.0 6 11 0.27

rc 50 11 6050 0.22 168869 3194.50 0.0 15042 210.29 0.0 6 13 0.49
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Table 4.10: RCESPP with capacity - 100 vertices

Instance Exact D.P. Resources + Arcs Resource + Cycles DSSR

Name Labels Time Nodes Time Gap Nodes Time Gap Iter C.N. Time

c 100 01 106 0.00 1 0.00 0.0 1 0.00 0.0 1 0 0.00

c 100 02 559 0.01 1 0.01 0.0 1 0.01 0.0 1 0 0.00

c 100 03 1456 0.03 7 0.04 0.0 1 0.02 0.0 2 1 0.03

c 100 04 5900 0.19 19 0.26 0.0 10 0.15 0.0 3 2 0.06

c 100 05 11546 0.44 43 0.36 0.0 22 0.31 0.0 3 4 0.07

c 100 06 45138 6.60 193 5.19 0.0 699 16.31 0.0 4 5 0.21

c 100 07 75698 13.78 65 1.84 0.0 99 2.65 0.0 3 6 0.18

c 100 08 310651 276.88 1275 77.50 0.0 517 30.53 0.0 6 10 1.34

c 100 09 4799333 520.82 8125 326.11 0.0 862 32.71 0.0 6 14 2.02

c 100 10 11465 627.08 0.0 12076 910.73 0.0 6 13 7.68

r 100 01 266 0.00 15 0.04 0.0 10 0.04 0.0 3 3 0.02

r 100 02 2120 0.06 459 3.61 0.0 225 1.45 0.0 2 4 0.06

r 100 03 11866 0.70 5337 126.87 0.0 776 15.03 0.0 4 5 0.59

r 100 04 53668 8.37 7639 306.49 0.0 1819 69.68 0.0 4 7 2.80

r 100 05 215976 104.41 81677 7.3 4464 198.93 0.0 3 5 2.87

r 100 06 764476 1300.33 51755 9.5 13209 1282.61 0.0 4 8 34.64

r 100 07 31121 11.2 29182 1.1 5 10 143.63

r 100 08 12548 25.4 18741 6.3 5 11 281.62

r 100 09 6912 51.1 12549 18.9 3 10 303.34

r 100 10 2551 67.4 6118 43.2 3 10 319.68

rc 100 01 90 0.00 1 0.00 0.0 1 0.00 0.0 1 0 0.00

rc 100 02 636 0.01 1 0.01 0.0 1 0.00 0.0 1 0 0.00

rc 100 03 1732 0.04 31 0.33 0.0 10 0.13 0.0 1 0 0.00

rc 100 04 5706 0.23 7 0.20 0.0 10 0.27 0.0 2 1 0.07

rc 100 05 12561 0.69 1669 71.45 0.0 64 2.35 0.0 4 4 0.29

rc 100 06 29786 2.80 71 2.52 0.0 60 3.01 0.0 3 4 0.35

rc 100 07 60499 9.74 4403 376.85 0.0 752 59.22 0.0 4 5 0.92

rc 100 08 124752 37.46 5735 353.00 0.0 254 25.00 0.0 4 7 1.77

rc 100 09 237652 130.20 739 109.08 0.0 391 28.76 0.0 3 5 1.40

rc 100 10 459269 470.24 25055 3.7 7385 1191.96 0.0 5 10 7.33
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Table 4.11: RCESPP with distribution and collection - 50 vertices

Instance Elementary D.P. Resources + Arcs Resource + Cycles SSR + C.N.

Name Labels Time Nodes Time Gap Nodes Time Gap Iter C.N. Time

c 50 01 26 0.00 1 0.00 0.0 1 0.00 0.0 1 0 0.00

c 50 02 159 0.00 1 0.00 0.0 1 0.00 0.0 1 0 0.00

c 50 03 554 0.01 1 0.02 0.0 1 0.01 0.0 2 1 0.00

c 50 04 1751 0.02 7 0.02 0.0 10 0.04 0.0 2 1 0.01

c 50 05 4675 0.07 15 0.07 0.0 22 0.10 0.0 2 2 0.02

c 50 06 11311 0.41 27 0.17 0.0 122 0.94 0.0 3 3 0.05

c 50 07 24006 1.72 17 0.16 0.0 53 0.48 0.0 2 3 0.03

c 50 08 51401 7.95 83 0.90 0.0 91 1.44 0.0 5 7 0.47

c 50 09 110354 35.46 69 0.88 0.0 207 2.47 0.0 3 5 0.19

c 50 10 233478 165.21 119 3.56 0.0 129 3.66 0.0 5 10 2.20

c 50 11 474147 672.29 21697 909.08 0.0 13404 351.33 0.0 6 14 45.97

r 50 01 59 0.00 1 0.00 0.0 1 0.00 0.0 1 0 0.00

r 50 02 188 0.00 5 0.02 0.0 7 0.02 0.0 2 1 0.01

r 50 03 486 0.01 1 0.01 0.0 1 0.01 0.0 3 3 0.01

r 50 04 1113 0.02 1 0.03 0.0 1 0.03 0.0 2 3 0.02

r 50 05 2085 0.04 11 0.14 0.0 7 0.08 0.0 5 6 0.13

r 50 06 3882 0.10 17 0.28 0.0 45 0.62 0.0 3 5 0.07

r 50 07 6986 0.23 3 0.07 0.0 3 0.08 0.0 2 4 0.06

r 50 08 12138 0.51 71 0.97 0.0 122 1.13 0.0 4 7 0.19

r 50 09 20384 1.23 13 0.42 0.0 19 0.59 0.0 3 7 0.21

r 50 10 33107 3.15 5 0.21 0.0 5 0.21 0.0 3 7 0.25

r 50 11 55835 8.19 49 2.21 0.0 61 2.39 0.0 4 8 0.73

rc 50 01 24 0.00 1 0.00 0.0 1 0.00 0.0 1 0 0.00

rc 50 02 83 0.00 1 0.00 0.0 1 0.00 0.0 1 0 0.01

rc 50 03 199 0.01 1 0.01 0.0 1 0.01 0.0 3 2 0.01

rc 50 04 397 0.01 55 0.12 0.0 73 0.14 0.0 5 4 0.02

rc 50 05 764 0.02 171 0.51 0.0 114 0.28 0.0 4 5 0.03

rc 50 06 1108 0.02 3321 19.86 0.0 1156 5.01 0.0 6 7 0.09

rc 50 07 1817 0.03 397 3.00 0.0 233 1.40 0.0 6 7 0.09

rc 50 08 2546 0.05 595 6.41 0.0 405 4.07 0.0 4 7 0.05

rc 50 09 3435 0.10 4363 63.94 0.0 666 8.13 0.0 7 9 0.22

rc 50 10 4998 0.15 12045 210.69 0.0 6551 79.95 0.0 6 11 0.24

rc 50 11 6213 0.23 166346 1.5 18791 1.1 6 11 0.29
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Table 4.12: RCESPP with distribution and collection - 100 vertices

Instance Elementary D.P. Resources + Arcs Resource + Cycles SSR + C.N.

Name Labels Time Nodes Time Gap Nodes Time Gap Iter C.N. Time

c 100 01 48 0.00 1 0.00 0.0 1 0.00 0.0 1 0 0.00

c 100 02 328 0.00 1 0.00 0.0 1 0.00 0.0 1 0 0.02

c 100 03 1179 0.02 1 0.00 0.0 1 0.00 0.0 2 1 0.02

c 100 04 3829 0.08 7 0.10 0.0 10 0.13 0.0 3 2 0.06

c 100 05 11112 0.41 15 0.26 0.0 22 0.40 0.0 3 4 0.10

c 100 06 30823 2.62 15 0.54 0.0 597 17.26 0.0 4 5 0.25

c 100 07 76548 12.72 35 1.24 0.0 101 3.67 0.0 3 6 0.27

c 100 08 197386 87.88 175 6.56 0.0 192 12.57 0.0 6 10 2.17

c 100 09 509042 516.42 239 15.83 0.0 884 58.01 0.0 5 11 2.34

c 100 10 737 89.37 0.0 952 11.27 0.0 7 15 20.64

r 100 01 253 0.00 1 0.00 0.0 1 0.00 0.0 1 0 0.00

r 100 02 1948 0.06 801 7.47 0.0 222 1.52 0.0 2 4 0.06

r 100 03 10874 0.68 7275 186.84 0.0 831 16.90 0.0 4 5 0.64

r 100 04 49258 7.34 15297 790.61 0.0 1814 69.59 0.0 3 5 1.34

r 100 05 189041 84.00 40991 3503.40 0.0 5242 357.35 0.0 3 5 3.71

r 100 06 676338 1040.25 42932 5.0 14627 1074.52 0.0 4 8 39.63

r 100 07 36124 8.9 24782 1.4 5 10 180.41

r 100 08 19733 22.3 30764 12.5 4 10 217.66

r 100 09 8153 45.5 11489 22.0 3 10 337.47

r 100 10 3559 62.8 4025 61.0 3 10 337.43

rc 100 01 67 0.00 1 0.00 0.0 1 0.00 0.0 1 0 0.00

rc 100 02 501 0.01 1 0.00 0.0 1 0.00 0.0 1 0 0.00

rc 100 03 1422 0.04 7 0.10 0.0 10 0.13 0.0 2 1 0.03

rc 100 04 4540 0.17 7 0.19 0.0 10 0.26 0.0 2 1 0.07

rc 100 05 10790 0.55 27 1.16 0.0 61 2.25 0.0 4 4 0.30

rc 100 06 25657 2.29 23 1.18 0.0 54 2.98 0.0 3 4 0.33

rc 100 07 52378 7.73 801 74.78 0.0 736 58.96 0.0 4 5 0.97

rc 100 08 107414 28.62 361 44.60 0.0 242 24.13 0.0 3 5 1.11

rc 100 09 207049 99.56 235 23.30 0.0 389 29.55 0.0 3 5 1.55

rc 100 10 5671 971.28 0.0 7162 1207.45 0.0 4 8 6.11
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Table 4.13: RCESPP with capacity and time windows - 50 vertices

Instance Exact D.P. Resources + Arcs Resource + Cycles DSSR

Name Labels Time Nodes Time Gap Nodes Time Gap Iter C.N. Time

c101 50 323 0.01 1 0.00 0.0 1 0.00 0.0 1 0 0.00

c102 50 3026 0.14 15 0.19 0.0 12 0.19 0.0 2 2 0.12

c103 50 30736 10.25 2533 127.32 0.0 966 27.74 0.0 4 6 14.06

c104 50 35781 1.2 24785 1835.47 0.0 4 11 344.65

c105 50 435 0.02 1 0.02 0.0 1 0.02 0.0 1 0 0.01

c106 50 359 0.01 1 0.03 0.0 1 0.03 0.0 1 0 0.02

c107 50 504 0.02 1 0.04 0.0 1 0.04 0.0 1 0 0.02

c108 50 736 0.04 1 0.04 0.0 1 0.04 0.0 1 0 0.04

c109 50 2031 0.15 81 1.90 0.0 78 1.69 0.0 8 11 1.35

r101 50 121 0.00 1 0.00 0.0 1 0.00 0.0 1 0 0.00

r102 50 596 0.02 5 0.05 0.0 4 0.04 0.0 4 5 0.08

r103 50 2322 0.06 817 9.83 0.0 103 1.07 0.0 3 4 0.27

r104 50 15441 0.66 83 2.46 0.0 264 7.08 0.0 3 5 0.77

r105 50 238 0.01 1 0.01 0.0 1 0.01 0.0 1 0 0.0

r106 50 818 0.02 13 0.14 0.0 9 0.08 0.0 4 6 0.18

r107 50 2784 0.08 15435 248.92 0.0 268 3.10 0.0 4 5 0.47

r108 50 16457 0.75 5 0.15 0.0 5 0.15 0.0 2 4 0.48

r109 50 584 0.02 1 0.02 0.0 1 0.02 0.0 1 0 0.02

r110 50 1600 0.04 1 0.04 0.0 1 0.04 0.0 1 0 0.04

r111 50 2289 0.07 43 0.73 0.0 46 0.66 0.0 3 5 0.33

r112 50 3987 0.12 1 0.05 0.0 1 0.05 0.0 1 0 0.05

rc101 50 270 0.00 1 0.00 0.0 1 0.00 0.0 1 0 0.01

rc102 50 906 0.01 17 0.13 0.0 17 0.13 0.0 3 3 0.09

rc103 50 3509 0.07 112 3.45 0.0 6168 90.88 0.0 5 11 0.95

rc104 50 8801 0.28 258 7.65 0.0 312 8.31 0.0 7 15 4.77

rc105 50 937 0.01 63 0.48 0.0 60 0.32 0.0 3 4 0.11

rc106 50 889 0.01 71 0.52 0.0 676 4.64 0.0 4 7 0.16

rc107 50 3525 0.07 29567 653.53 0.0 13452 195.907 0.0 6 9 0.83

rc108 50 10166 0.21 34205 1143.65 0.0 58476 1474.19 0.0 6 13 2.12
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Table 4.14: RCESPP with capacity and time windows - 100 vertices

Instance Exact D.P. Resources + Arcs Resource + Cycles DSSR

Name Labels Time Nodes Time Gap Nodes Time Gap Iter C.N. Time

c101 100 679 0.06 1 0.02 0.0 1 0.02 0.0 1 0 0.02

c102 100 11839 2.99 15 0.89 0.0 12 0.67 0.0 2 2 0.63

c103 100 123804 133.56 2539 507.78 0.0 3075 485.68 0.0 5 9 40.15

c104 100 17553 17.8 23402 16.5 4 11 311.44

c105 100 915 0.11 1 0.06 0.0 1 0.06 0.0 1 0 0.06

c106 100 1159 0.16 1 0.07 0.0 1 0.07 0.0 1 0 0.07

c107 100 1058 0.16 1 0.08 0.0 1 0.08 0.0 1 0 0.08

c108 100 1690 0.33 1 0.17 0.0 1 0.17 0.0 1 0 0.17

c109 100 4608 1.28 111 14.18 0.0 101 12.66 0.0 8 13 9.19

r101 100 452 0.01 1 0.00 0.0 1 0.00 0.0 1 0 0.00

r102 100 14792 2.21 4203 438.82 0.0 1003 96.25 0.0 3 6 21.69

r103 100 135575 95.73 377 128.71 0.0 252 61.10 0.0 4 7 159.74

r104 100 655858 1242.56 4531 0.9 1945 1013.04 0.0 3 5 78.32

r105 100 1161 0.06 1 0.03 0.0 1 0.03 0.0 1 0 0.03

r106 100 22970 5.52 26059 3.4 3344 467.29 0.0 4 7 71.60

r107 100 138027 100.83 1417 717.37 0.0 732 232.91 0.0 4 12 335.98

r108 100 570910 891.81 1593 1098.05 0.0 1451 611.61 0.0 3 5 146.58

r109 100 3504 0.37 49 3.39 0.0 49 3.45 0.0 3 5 2.93

r110 100 25063 4.89 307 69.25 0.0 406 77.55 0.0 3 6 19.31

r111 100 69890 25.86 2669 866.34 0.0 361 129.24 0.0 3 7 53.16

r112 100 394702 647.36 2167 2227.74 0.0 665 385.00 0.0 3 9 340.61

rc101 100 955 0.03 1 0.02 0.0 1 0.02 0.0 1 0 0.02

rc102 100 5384 0.30 17 1.12 0.0 21 1.34 0.0 4 4 3.17

rc103 100 38308 6.01 861 110.78 0.0 6494 587.39 0.0 4 8 35.37

rc104 100 232961 148.73 607 194.68 0.0 1054 203.36 0.0 4 8 102.56

rc105 100 2964 0.15 7 0.43 0.0 13 0.67 0.0 4 6 1.14

rc106 100 2574 0.12 31 1.85 0.0 12 0.56 0.0 3 3 1.01

rc107 100 10505 0.72 87 8.50 0.0 27 2.79 0.0 4 6 3.65

rc108 100 45430 6.75 239 32.34 0.0 143 12.43 0.0 3 5 4.84
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Table 4.15: RCESPP with capacity and time windows - c 104, 50 vertices

Instance Exact D.P. Resources + Arcs Resource + Cycles DSSR

Name Labels Time Nodes Time Gap Nodes Time Gap Iter C.N. Time

c104 50 01 59 0.00 1 0.01 0.0 1 0.01 0.0 1 0 0.01

c104 50 02 126 0.00 1 0.01 0.0 1 0.01 0.0 1 0 0.01

c104 50 03 200 0.01 1 0.01 0.0 1 0.01 0.0 1 0 0.01

c104 50 04 206 0.01 1 0.01 0.0 1 0.01 0.0 1 0 0.01

c104 50 05 208 0.01 1 0.01 0.0 1 0.01 0.0 1 0 0.01

c104 50 06 269 0.01 1 0.02 0.0 1 0.02 0.0 1 0 0.02

c104 50 07 475 0.01 1 0.02 0.0 1 0.02 0.0 1 0 0.02

c104 50 08 586 0.04 1 0.02 0.0 1 0.02 0.0 1 0 0.02

c104 50 09 730 0.05 1 0.02 0.0 1 0.02 0.0 1 0 0.02

c104 50 10 804 0.06 1 0.02 0.0 1 0.02 0.0 1 0 0.02

c104 50 11 1440 0.09 1 0.03 0.0 1 0.03 0.0 1 0 0.03

c104 50 12 2292 0.21 1 0.03 0.0 1 0.03 0.0 1 0 0.03

c104 50 13 3771 0.43 1 0.04 0.0 1 0.04 0.0 1 0 0.04

c104 50 14 4031 0.53 19 0.24 0.0 13 0.18 0.0 2 3 0.14

c104 50 15 5508 0.74 13 0.22 0.0 9 0.12 0.0 3 4 0.49

c104 50 16 9411 2.10 39 0.88 0.0 12 0.25 0.0 :3 4 0.53

c104 50 17 18579 5.02 45 1.09 0.0 15 0.35 0.0 3 4 0.60

c104 50 18 21738 6.54 145 3.53 0.0 76 1.66 0.0 3 4 0.61

c104 50 19 25638 9.25 77 2.43 0.0 64 1.41 0.0 3 5 1.20

c104 50 20 36762 23.16 85 2.02 0.0 91 2.35 0.0 4 6 2.11

c104 50 21 81804 73.19 179 5.95 0.0 144 3.99 0.0 4 6 2.69

c104 50 22 105756 110.25 199 5.35 0.0 91 2.52 0.0 3 6 2.31

c104 50 23 126645 149.81 255 11.00 0.0 214 9.34 0.0 8 11 17.45

c104 50 24 157915 275.93 276 19.7 0.0 238 17.98 0.0 5 7 13.43

c104 50 25 323641 1016.98 321 18.36 0.0 381 19.83 0.0 4 7 13.31



4. The pricing problem: the RCESPP 63

Table 4.16: RCESPP with capacity and time windows - c 104, 100 vertices

Instance Exact Resources + Arcs Resource + Cycles DSSR

Name Labels Time Nodes Time Gap Nodes Time Gap Iter C.N. Time

c104 100 01 160 0.01 1 0.04 0.0 1 0.04 0.0 1 0 0.04

c104 100 02 227 0.01 1 0.05 0.0 1 0.05 0.0 1 0 0.05

c104 100 03 368 0.02 1 0.06 0.0 1 0.06 0.0 1 0 0.06

c104 100 04 415 0.04 1 0.07 0.0 1 0.07 0.0 1 0 0.07

c104 100 05 427 0.05 1 0.07 0.0 1 0.07 0.0 1 0 0.07

c104 100 06 523 0.06 1 0.08 0.0 1 0.08 0.0 1 0 0.08

c104 100 07 895 0.11 1 0.08 0.0 1 0.08 0.0 1 0 0.08

c104 100 08 1153 0.19 1 0.09 0.0 1 0.09 0.0 1 0 0.09

c104 100 09 1393 0.29 1 0.09 0.0 1 0.09 0.0 1 0 0.09

c104 100 10 1557 0.37 1 0.09 0.0 1 0.09 0.0 1 0 0.09

c104 100 11 2655 0.59 1 0.11 0.0 1 0.11 0.0 1 0 0.11

c104 100 12 4504 1.24 1 0.12 0.0 1 0.12 0.0 1 0 0.12

c104 100 13 7336 2.37 1 0.11 0.0 1 0.11 0.0 1 0 0.11

c104 100 14 8457 3.30 33 1.76 0.0 11 0.74 0.0 3 3 1.49

c104 100 15 10932 4.49 65 3.24 0.0 21 1.05 0.0 2 3 1.26

c104 100 16 19133 9.75 249 15.12 0.0 23 1.62 0.0 2 3 1.56

c104 100 17 39114 23.83 211 20.02 0.0 21 1.60 0.0 2 3 1.65

c104 100 18 53650 39.11 75 8.64 0.0 30 3.54 0.0 2 3 1.65

c104 100 19 66165 56.43 45 5.85 0.0 30 2.99 0.0 4 6 6.32

c104 100 20 91825 110.71 59 4.66 0.0 42 2.04 0.0 4 5 7.84

c104 100 21 197498 336.64 67 7.29 0.0 48 4.26 0.0 4 5 8.79

c104 100 22 315475 702.11 89 10.78 0.0 59 5.94 0.0 3 6 7.54

c104 100 23 437113 1169.71 53 7.94 0.0 53 7.60 0.0 7 9 32.06

c104 100 24 547902 1945.73 141 31.02 0.0 143 33.46 0.0 5 7 29.87

c104 100 25 187 47.05 0.0 17 44.32 0.0 4 7 27.74



Chapter 5

A Branch-and-Price algorithm

In this chapter I provide the implementation details of a Branch-and-Price algo-

rithm for vehicle routing problems. Specific problem-related considerations will be

provided in the next three chapters.

5.1 Implementing a Branch and Price algorithm

The theoretical aspects of column generation are simple, clearly understandable

and powerful. Nevertheless the general scheme provided in section 3.2 must be

enriched by a lot of hidden issues when developing a branch-and-price algorithm.

5.1.1 Initialization

All column generation methods need an initial feasible restricted linear master

problem to ensure that proper dual information is passed to the pricing problem

and it has been shown that proper initialization is an important issue to solve a

linear program by column generation. (see Vanderbeck [17]).

For CVRP and VRPDC I used the tabu search algorithm proposed by Bianchessi

and Righini [65] to initialize the restricted master problem. The initialization al-

gorithm provided a set of feasible columns that vary from 20 to 50 in the reported

experiments.

For the CVRPTW the restricted master problem was initialized with a set of

feasible columns obtained with a modified Clarke&Wright’s savings algorithm [20].

The modification deals with the time windows feasibility that is checked at each

iteration before the joining procedure. Five runs of the initialization provided a set

of feasible columns that vary from 10 to 30 in the reported experiments. For each

run the travel costs have been modified by increasing the cost of the arcs belonging

to the routes obtained from the previous run by their double.

64
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To ensure the existence of a feasible solution I insert a dummy column with a

very high cost, representing a fictitious (and infeasible) route visiting all the cus-

tomers. For each specific VRP I provide a problem specific initialization heuristic

(see next three chapters).

At each non-root node of the branch-and-bound tree, the algorithm initializes

the RLMP with the same set of columns used by the last considered node, excepted

the columns which have become infeasible because of branching. Note that the last

node considered does not necessarily coincide with the father of the current node,

but it depends on the search strategy.

5.1.2 Column pool and column management

In section 3.3 I proposed a set partitioning reformulation for the CVRP. In that

model the constant aip represents the covering of user i by route p i.e. it takes value

1 if the column p visits node i and 0 otherwise. Then the column itself does not

contain explicit information on the sequence in which the customers are visited.

It is then necessary an appropriate data structure, the column pool, where each

generated column is associated with the list of the arcs used in the corresponding

route. This additional data-structure is necessary to test whether the column is

feasible in each node of the branching tree.

The implementation used in this thesis is a double-linked list. Associated with

the list, an array of pointers ensures direct access to the structure of the columns

stored in the RLMP. Two implementations based on trees with logarithmic inser-

tion and deletion time and based on hash functions with constant insertion and

deletion time has been tested without any significant improvement because the

column pool management time is a very small fraction (less than 0.2% in the tests)

of the overall computing time.

All columns with negative reduced cost generated at each iteration of the col-

umn generation algorithm are inserted into the RLMP . When the number of

columns in the RLMP exceeds a predefined fixed value (set to 5000 in the tests),

I delete the columns with a reduced cost greater than a threshold value (set to

N min(i,j)∈A{cij} in the tests) but not from the pool. After ten consecutive evalu-

ations yielding a positive reduced cost, the columns are erased also from the pool.

5.1.3 Heuristic pricing

At each iteration of the column generation process it is not necessary to solve the

pricing problem to optimality to find columns with negative reduced cost. It is

possible to devise ad-hoc heuristic algorithms to perform a first search. Next, if
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heuristics fail, an optimization algorithm is used to find more columns or to prove

the RLMP optimality.

A heuristic algorithm based on dynamic programming is obtained by using the

state definition of RCESPP and using the dominance criterion of the RCSPP.

Another heuristic is obtained discarding all arcs (i, j) ∈ A such that:

cij > α max
k∈N
{λk}

where parameter α is set between 0 and 1. When the dynamic programming

algorithm described above is run on the reduced graph, it is very fast and though

it may miss the optimal solution it can find negative reduced cost columns.

In mine experiments I set α = 0.1 and observed that the first time the algorithm

is executed at each node of the branching tree it finds a lot of negative reduced

cost columns, including the optimal one, in a small fraction of the computing time

required by the same algorithm on the complete graph.

However if the value of α is left unchanged, the algorithm fails to find negative

reduced cost columns in subsequent runs; therefore we raise α by 0.2 in every

subsequent trial. If no column with negative reduced cost is found with α = 0.9,

the heuristic algorithm stops.

5.1.4 Overall pricing algorithm

In column generation algorithms it is common to execute some fast heuristics to

generate columns with negative reduced cost quickly, whenever possible. In our

algorithm at each column generation iteration the search for new columns is made

by successive steps of increasing computational complexity. The search is stopped

as soon as M columns with negative reduced cost have been found.

Step 1: Search in the pool. A pool of previously computed columns is scanned

and the reduced cost is evaluated for all columns which are feasible for the current

node.

Step 2: Deterministic greedy algorithm. A nearest neighbor algorithm produces

a solution by adding arcs to a path starting from vertex s and going forward or

starting from vertex t and going backward. At each iteration the most valuable arc

is added among those which do not close cycles. The algorithm is executed once

forward and once backward.

Step 3: Randomized greedy algorithm. This step is similar to the previous one

but at every iteration the next arc is randomly chosen among the four most valu-

able arcs extending the path. The algorithm is multistarted forward and backward
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for a number of times depending on the size of the problem instance.

Step 4: Heuristic dynamic programming. The heuristic (bi-directional) dy-

namic programming algorithm described above is executed on the complete graph

reduced .

Step 5: Reduced dynamic programming. The exact (bi-directional) dynamic

programming algorithm is executed on the graph reduced as explained above, with

values of α increasing from 0.1 to 0.9 until some new column is found.

Step 6: Dynamic programming. This last step consists of running the exact al-

gorithm or the decremental state space relaxation algorithm. This step is executed

only if no column with negative reduced cost has been generated in steps 1-5.

5.1.5 Stabilization

It has been shown that the column generation methods based on the simplex

algorithm have poor convergence (see Lübbecke and Desrosiers [15] and Amor [35]).

Moreover it has been observed that the dual variable values do not monotonically

converge to their optima but they oscillate. This fluctuation is connected to the

coordination between the master problem and the subproblem. For combinatorial

problems the optimal solution is an extreme point of the optimal face of the dual

polyhedron. Then a new column for the master problem (a new row in the dual

problem, that is a hyper-plane in the dual space) can vary this optimal face with

small changes of the objective value but big changes of the dual variable values.

Several ideas to stabilize the dual space have been proposed in the literature.

Trust Region method

The basic idea is to control the dual variables considering the dual RMP where

additional box constraints are imposed around the current optimal solution of the

dual variables λ. That is λ̂i − δ ≤ λi ≤ λ̂i + δ with δ > 0. The parameter δ is

tuned dynamically during the column generation process. The method has been

proposed by Marsten [80] and used by Kallehague et al. [5]

Distance penalization

The main idea is to linearly penalize the distance of the new dual variable from

the ones of the previous iteration the penalization parameter is tuned along the

generation process, see Kim et al. [85].

Primal-Dual stabilization

A more flexible stabilized column generation approach, that can be seen as a mixed

approach of the two above, has been followed by Ben Amor [35] and du Merle et
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al. [12]. They used a linear programming box on the dual variables added with a

ε-perturbation of the right hand sides. This means that a deviation of λ from the

current dual optimal value outside the stabilization box is penalized by a factor ε

per unit. The parameters are tuned during the column generation process. If the

new dual variables are inside the specified box then it is reduced and the penalty

is augmented; otherwise the box is enlarged and ε is decreased to allow new dual

variables to be generated since the current estimation is bad.

Interior point stabilization

The two methods described impose a great attention on the parameter tuning

during the whole generation process. A potentially parameter-free stabilization

method is the one proposed by Rousseau et al. [45]. Since the set covering for-

mulation of the VRP is degenerate the dual problem has an infinite number of

optimal solutions. The main idea of the interior point stabilization is not to use

one of the extreme points of the dual polyhedron, returned randomly by a standard

LP solver, as an estimate of the marginal costs but rather the center of the optimal

face or at least an interior point.

Let us consider the dual of the master problem:

d∗ = max
∑

i∈{1...N}

bλi

s.t.
∑

i∈{1...N}

λiaip ≤ cp ∀p ∈ P

λ ≥ 0

Once the RLMP is solved to optimality let P ∗ be the set of columns for which

zp > 0 and S the set of nodes for wich the covering constraint is not tight, that is

the associated slack variable is strictly positive. The optimal dual polyhedron has

the form:

∑

i∈{1...N}

λiaip ≤ cp ∀p ∈ P \ P ∗

∑

i∈{1...N}

λiaip = cp ∀p ∈ P ∗

λi = 0 ∀i ∈ S

λi ≥ 0 ∀i ∈ {1 . . .N} \ S
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A point of this polyhedron can be obtained solving the following linear problem:

max
∑

i∈{1...N}

uiλi

∑

i∈{1...N}

λiaip ≤ cp ∀p ∈ P \ P ∗

∑

i∈{1...N}

λiaip = cp ∀p ∈ P ∗

λi = 0 ∀i ∈ S

λi ≥ 0 ∀i ∈ {1 . . . N} \ S

where the objective a convex combination, uλ with ui ∈ (0, 1), of the dual vari-

ables. Iterating this procedure and perturbing the vector u (considering also −u)

one should obtain several extreme points of the dual polyhedron. Any convex com-

bination of such extreme points gives an interior point of the optimal dual face and

thus a best estimate of the marginal costs associated with the constraints of the

RLMP.

I used the interior point stabilization technique described above and I found

that for VRP problems it works much better than the one based on dual boxes

proposed by du Merle et al. [12]. From my experience I found that stabilization

is useful to generate an initial set of good columns in the root node of the search

tree. In the subsequent nodes of the search tree the feasible columns are sufficient

to provide a good estimation of the dual values, even without stabilization.

5.1.6 Lower bounding and termination

It is well-known that one of the drawbacks of column generation is the so-called

“tailing-off” effect: a lot of iterations that do not significantly modify the optimal

value of the RLMP are often necessary to prove optimality. Therefore many

authors (see for instance Farley [3] and Vanderbeck and Wolsey [18]) proposed

alternative lower bounding techniques, that allow an earlier termination of column

generation yet providing a valid lower bound.

The algorithm exploits the bound obtained from the Lagrangean relaxation of

covering constraints (3.16). The optimal value c̃∗ of the pricing subproblem is used

to compute the lower bound

zlb = Kc̃∗ + z∗RLMP

where z∗RLMP is the optimal value of the current RLMP .

When zlb is greater than the best incumbent feasible solution, the current node

is fathomed. If column generation is terminated because the time-out has expired,

zlb is kept as the final lower bound of the node.
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5.1.7 Search strategy

The column generation algorithm described above is executed at every node of

a decision tree in a branch-and-bound framework. I explore the decision tree

according to a best-first policy, where subproblems are ranked on the basis of the

associated lower bound. Experiments with depth-first search yielded inferior results

in terms of number of problems solved to optimality within the same amount of

computing time.

5.1.8 Upper bounding

I did not insert in the branch-and-bound algorithm any sophisticated upper bound-

ing technique, because computing a feasible solution to the VRPSPD is an NP-

complete problem in itself. To quickly produce other feasible solutions during the

search I devised the following greedy procedure, exploiting the structure of the

current (possibly fractional) optimum of the RLMP at each column generation

iteration. The cycle-free column with the highest fractional value, say r∗, is in-

serted into the primal solution (i.e. zr∗ is temporarily fixed to 1) and the resulting

RLMP is reoptimized. This is iterated until either a complete integer solution

is obtained or the algorithm fails. This heuristic is quite fast and therefore it is

executed at each column generation iteration at each node of the search tree. This

is especially useful for large instances, where the initial upper bound is not so close

to the optimum as it is for small instances.

5.1.9 Branching

In the RLMP there are only cycle-free columns but there may be still fractional

variables, In this case I perform branching on arcs: this binary branching scheme

consists of selecting a vertex i∗ belonging to different fractional routes, in which

the arcs that are fractionally selected entering it or leaving it are different. Half of

such arcs are then fixed forbidden in one branch and the other half is “forbidden”

in the other branch.

5.2 Increasing the lower bound by valid inequal-

ities

It is common that the solution of the linear relaxation of the RMP is not feasible

for the original problem. For this reason the Branch-and-price method require to
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take decisions on fractional variables to reach feasibility. Another way to reach

the feasibility is based on the Branch-and-cut method where the introduction of

valid inequalities is used to improve the bounds to tighten the formulation before

the branching decisions. There are a lot of general methods to calculate valid

inequalities for integer programs but more efficient methods can be devised when

the structure of the problem is known. The TSP polytope has been widely studied

in the literature (see for instance Jünger et al. [58]) and many inequalities for VRP

can be derived from those for TSP (see Cornuejols and Harche [21]).

Kohl et al. [69] introduced the use of valid inequalities in column generation

methods for CVRPTW. When column generation, valid inequalities and branching

decisions on variables are used together to solve to optimality an integer problem

a Branch&Cut&Price algorithm arises.

Here I revise briefly the method and how to embed the cut generation into a

Branch-and-price framework.

The k-Path cuts A general valid inequality for VRPs has the following form:

∑

k∈K





∑

(i,j)∈A

αk
ijX

k
ij



 ≥ γ

where α and γ are constants. When vehicles in K are identical it is common to

aggregate the inequality over the index k. The simpler inequality that arises has

the form
∑

(i,j)∈A

αijXij ≥ γ

Kohl et al. [69] introduced the concept of k-path cuts for CVRPTW extending

the idea of Laporte et al. [30]. The basic idea is to identify a subset of vertices that

is visited by less than k vehicles in the current fractional solution but it requires,

in the optimal solution, at least k vehicles to be serviced.

Let F = (V,A′) be the flow network induced by the current solution xijp where

A′ = {(i, j) ∈ A|xijp > 0} and the flow capacity is given by xij =
∑

p∈P xijp

For any given set S ⊆ V, |S| ≥ 1 the flow x(S) into S is given by:

x(S) =
∑

i∈S̄

∑

j∈S

xij

where S̄ = V \ S. The subtour elimination constraints (see [58]) of the form

X(S) ≥ 1 can be reformulated for the VRPs replacing the right hand side by k(S)

that represents the smallest number of vehicles needed to service all vertices in S.

The inequality:
∑

(i,j)∈A

αijXij ≥ γ
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is now easily transformed into a k-path inequality by setting αij = 1 if i ∈ S̄∧j ∈ S

and γ = k(S)

For time constrained VRPs the identification of k(S) requires to solve a time

constrained VRP over the set S using exactly k vehicles, for capacity constrained

VRPs the identification of k(S) requires to solve a bin-packing problem over S

using exactly k bins.

For this reason the authors decided to limit the search for 2-path cut inequalities

for CVRPTW (that is checking whether x(S) < 2 and k(S) > 1). To check

k(S) > 1 for a particular S one should determine whether the vehicle capacity is

not sufficient for the set S (this can be done in linear time) and whether there is

not a time-feasible hamiltonian tour through S. When |S| is small the TSPTW

feasibility problem can be easily solved by dynamic programming (see Dumas et

al. [92]).

Kohl et al. proposed a heuristic and an exact method to find sets S with

x(S) < 2 while more sophisticated and efficient separation algorithms have been

proposed by Cook and Rich [90].

The main idea is to add valid inequalities to the master problem by adding

appropriate rows to the RLMP. The added inequalities introduce an extra set of

dual variables that must be taken into account. Let µr ≥ 0 be the dual variable

associated with the r-th inequality. The reduced cost of the arcs is changed as

follows:

ĉij = cij − αijµr

The advantage of this kind of inequalities is that they do not change the structure

of the pricing subproblem, which is still a RCESPP.

Since the purpose of this thesis is not a deep analysis of cutting plane methods,

only the basic implementation of the above algorithms has been taken into account,

see Kohl et al. [69] .

5.3 Computational results

The next three chapters report on computational experiments for CVRP, VRPDC

and CVRPTW. All computational experiments were performed on a 1.6GHz PC

equipped with 512Mb of memory and Linux Red Hat 7.3. Algorithms were coded in

C and compiled with gcc 3.0.4. with the -o3 (optimization) option. The CPU times

reported are in seconds and include all I/O and memory allocation operations.

Times have been computed with the user time() function of the ptime library. The

restricted master problems were solved with the ILOG-CPLEX 8.1 callable library

using the primal simplex algorithm (primopt). Computing time was limited to two
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hours, except for previously unsolved instances where computing time limitations

have been removed.



Chapter 6

Computational results: The

CVRP

6.1 Instances

Several instance sets have been proposed in the literature to evaluate the perfor-

mances of algorithms for the CVRP. Most of them and the most widely used are

Euclidean instances. This means that the customers are located on a Euclidean

plane and that the travel cost cij from customer i to customer j is equal to the

Euclidean distance between the customers. Augerat et al. [70] proposed three sets

of Euclidean instances where customers coordinates are drawn randomly within a

square made of 100x100 discrete points. Christofides and Elion instance set [68]

is made of Euclidean instances where both customers coordinates and delivery de-

mands are randomly generated. Other Euclidean and non Euclidean instance sets

have been proposed by Fisher [54], Fischetti et al. [53], Hadjiconstantinou et al

[14] and Christofides, Mingozzi and Toth instance set [66]. These sets of instances

are available at www.brancandcut.org.

The best available results for the mentioned test instances have been provided

recently by Fukasawa et al. [79]. The authors proposed an efficient combination

of both column generation and cut generation techniques embedded in a branch-

and-bound algorithm. The proposed algorithm has been called robust Branch-and-

Cut-and-Price (BCP in the reminder). It should be pointed out that the work of

Fukasawa et al. is based on the efficient separation procedures derived from the

CVRPSEP package [40] proposed by Lysgaard [41] while the column generation

method is a standard q-route generation method with k-cycle elimination (with

k ≤ 3). A q-route is a path that starts at the depot and visits a subset of customers

with total demand less or equal to the vehicle capacity. Some customers may be

visited more than once and then the set of valid CVRP routes is included in the

74
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set of q-routes.

The algorithm proposed in this thesis does not aim to represent the state-of-

the-art algorithm for the CVRP. In this work the cut generation component is not

explored deeply. Only the 2-path cuts generation (see Kohl et al. [69]) has been

embedded in the original set-partitioning formulation.

The main scope of this thesis is to analyze the benefits of solving the pricing

problem to optimality compared with the relaxed approach in terms of lower bound

quality without using any sophisticated cut generation. It will be the topic of future

work to study the most profitable mix of better pricing algorithms and better cut

generation algorithms.

Following the approach of the cited papers on the CVRP in order to perform sig-

nificant comparisons, all the Euclidean distances have been rounded to the nearest

integer although this does not guarantee the presence of the triangular inequality.

6.2 Computational results

Tables 6.1 to 6.6 report on the computational experiment performed on the in-

stances described above.

The root node lower bound comparison between instances solved with the re-

laxed pricing algorithm and the exact pricing algorithm is reported both with and

without the use of 2-path cuts.

Tables are organized as follows: the instance name (the instance name contains

itself the problem dimension and the number of available vehicles) and the optimal

solution are reported first; then the root node lower bound LBr obtained with the

relaxed pricing algorithm and the root node lower bound LBe obtained with the

exact pricing algorithm both without the use of 2-path cuts, the two percentage

gaps Gr and Ge for the relaxed and exact pricing algorithm, respectively; finally the

root node lower bounds LBc
r and LBc

e obtained with the relaxed and exact pricing

algorithm, respectively, with the addition of 2-path cuts and the two percentage

gaps Gc
r and Gc

e.

All the percentage gaps are computed as follows:

G = 100 · (UB − LB)/UB

The value UB represents the value of the best known integer solution at the

end of the computation. Tables 6.4 to 6.6 report on the comparison between the

exact pricing algorithm and BCP.

Tables are organized as follows: the instance name and the optimal solution

are reported again for the sake of completeness. Then, for the two algorithms,

the total number of nodes of the search tree, the computing time (in seconds)
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Instance IPopt LBr LBe Gr Ge LBc
r LBc

e Gc
r Gc

e

A-n37-k5 669 657.2 659.7 1.76 1.39 662.1 667.2 1.03 0.27

A-n37-k6 949 900.3 930.8 5.13 1.92 932.1 934.9 1.78 1.49

A-n38-k5 730 701.2 730.0 3.95 0.00 711.1 730.0 2.59 0.00

A-n39-k5 822 801.4 806.8 2.51 1.85 805.1 811.7 2.06 1.25

A-n39-k6 831 800.1 805.8 3.72 3.03 809.9 810.4 2.54 2.48

A-n44-k6 937 911.3 922.3 2.74 1.57 922.1 925.2 1.59 1.26

A-n45-k6 944 894.2 944.0 5.28 0.00 936.7 944.0 0.77 0.00

A-n45-k7 1146 1012.1 1137.8 1136.8 0.80 1122.9 1139.2 2.02 0.59

A-n46-k7 914 887.2 900.9 2.93 1.43 900.7 905.6 1.46 0.92

A-n48-k7 1073 1031.1 1049.3 3.90 2.21 1054.3 1061.0 1.74 1.12

A-n53-k7 1010 978.5 995.6 3.12 1.43 991.7 999.8 1.81 1.01

A-n54-k7 1167 1114.0 1141.6 4.54 2.18 1141.7 1145.0 2.17 1.89

A-n55-k9 1073 1025.4 1056.6 4.44 1.53 1055.4 1061.3 1.64 1.09

A-n60-k9 1354 1305.6 1337.3 3.57 1.23 1341.7 1351.0 0.91 0.22

A-n61-k9 1034 996.8 1034.0 3.60 0.00 1020.3 1034.0 1.32 0.00

A-n62-k8 1288 1222.7 1261.3 5.07 2.07 1266.1 1275.1 1.70 1.00

A-n63-k9 1616 1564.8 1589.3 3.17 1.65 1597.1 1605.3 1.17 0.66

A-n63-k10 1314 1267.4 1296.3 3.55 1.35 1291.4 1299.8 1.72 1.08

A-n64-k9 1401 1353.3 1356.1 3.40 3.20 1355.2 1357.2 3.27 3.13

A-n65-k9 1174 1133.0 1143.1 3.49 2.63 1143.1 1157.2 2.63 1.43

A-n69-k9 1159 1113.2 1132.7 3.95 2.27 1136.6 1147.4 1.93 1.00

A-n80-k10 1763 1712.2 1742.1 2.88 1.19 1742.4 1760.9 1.17 0.12

Table 6.1: Lower bound comparison - CVRP set A

are reported. For the exact pricing algotithm the duality gap at the end of the

computation is also reported. Computing time reported in Fukasawa et al. have

been multiplied by a factor of 1.5 to compare the computer performances using the

Linpack benchmark, available at http://performance.netlib.org.

The computational results for instance set B by Augerat et al [70] and instance

set M by Christofides, Mingozzi and Toth [66] have not been reported since the

exact pricing algorithm failed to compute significant results in a reasonable amount

of time. For example the instance B-n38-k6, that has been solved by Fukasawa

et al. [79] in less than 15 seconds and with 14 branching decisions, required more

than 800 seconds and 500 branching decisions to be solved by the exact pricing

algorithm. This unexpected behaviour of the exact pricing algorithm should be

investigated further.

Table 6.1 shows that, for the instance set A, the relaxed pricing algorithm

without any cut provides a lower bound that is under the optimal solution from

1.76% up to 5.13% while the worst gap provided by the exact pricing algorithm

without cuts is 3.20%. 2-path cuts are useful both for relaxed and exact pricing
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Instance IPopt LBr LBe Gr Ge LBc
r LBc

e Gc
r Gc

e

P-n16-k8 450 431.3 443.7 4.16 1.40 446.1 448.0 0.87 0.44

P-n19-k2 212 200.4 211.0 5.47 0.47 210.3 212.0 0.80 0.00

P-n20-k2 216 201.5 212.0 6.71 1.85 211.2 215.5 2.22 0.23

P-n21-k2 211 203.5 211.0 3.55 0.00 204.7 211.0 2.99 0.00

P-n22-k2 216 202.1 215.5 6.44 0.23 212.1 215.5 1.81 0.23

P-n22-k8 603 600.1 603.0 0.48 0.00 603.0 603.0 0.00 0.00

P-n23-k8 529 526.1 529.0 0.55 0.00 529.0 529.0 0.00 0.00

P-n40-k5 458 449.1 452.5 1.94 1.20 450.2 453.9 1.70 0.90

P-n45-k5 510 491.5 502.5 3.63 1.47 492.1 503.1 3.51 1.35

P-n50-k7 554 539.1 546.2 2.69 1.41 541.3 547.7 2.29 1.14

P-n50-k8 631 612.1 615.6 3.00 2.44 614.0 616.1 2.69 2.36

P-n50-k10 696 671.4 687.5 3.53 1.22 673.2 688.1 3.28 1.14

P-n51-k10 741 721.5 733.8 2.63 0.97 724.8 734.2 2.19 0.92

P-n55-k7 568 551.8 556.8 2.85 1.97 553.1 558.3 2.62 1.71

P-n55-k8 588 561.3 575.5 4.54 2.13 563.1 577.8 4.23 1.73

P-n55-k10 694 676.2 680.2 2.56 1.99 679.4 681.3 2.10 1.83

P-n55-k15 989 963.0 969.0 2.63 2.02 965.9 971.8 2.34 1.74

P-n60-k10 744 729.6 736.9 1.94 0.95 733.6 739.7 1.40 0.58

P-n60-k15 968 950.0 960.0 1.86 0.83 952.0 962.8 1.65 0.54

P-n65-k10 792 766.1 785.6 3.27 0.81 768.2 787.1 3.01 0.62

P-n70-k10 827 785.2 810.7 5.05 1.97 786.4 813.4 4.91 1.64

P-n76-k4 593 582.3 584.4 1.80 1.45 584.8 586.1 1.38 1.16

P-n76-k5 627 601.8 609.4 4.02 2.81 605.2 611.3 3.48 2.50

P-n101-k4 681 655.3 667.1 3.77 2.04 659.0 672.3 3.23 1.28

Table 6.2: Lower bound comparison - CVRP set P

Instance IPopt LBr LBe Gr Ge LBc
r LBc

e Gc
r Gc

e

E-n13-k4 247 244.1 247.0 1.17 0.00 245.6 247.0 0.57 0.00

E-n22-k4 375 349.3 375.0 6.85 0.00 351.2 375.0 6.35 0.00

E-n23-k3 569 559.8 567.1 1.62 0.33 561.5 569.0 1.32 0.00

E-n30-k3 534 522.7 531.2 2.12 0.52 523.7 531.7 1.93 0.43

E-n31-k7 379 369.0 374.5 2.64 1.19 371.2 376.8 2.06 0.58

E-n33-k4 835 811.2 822.7 2.85 1.47 819.1 828.1 1.90 0.83

E-n51-k5 521 512.9 515.4 1.55 1.07 514.7 516.8 1.21 0.81

E-n76-k7 682 663.3 665.6 2.74 2.40 664.1 667.1 2.62 2.18

E-n76-k8 735 716.7 720.1 2.49 2.03 722.5 725.1 1.70 1.35

E-n76-k10 830 811.4 814.7 2.24 1.84 814.8 816.9 1.83 1.58

E-n76-k14 1021 999.6 1000.9 2.10 1.97 1001.7 1005.7 1.89 1.50

E-n101-k8 815 786.4 796.0 3.51 2.33 795.4 806.1 2.40 1.09

E-n101-k14 1067 1045.1 1046.3 2.05 1.94 1046.1 1049.6 1.96 1.63

Table 6.3: Lower bound comparison - CVRP set E
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algorithms. The percentage gap for the relaxed pricing is reduced and it varies

between 0.91% and 3.27%. For the exact pricing the gap is reduced between

0.0% and 3.13%. The small gap reduction for instance A-n64-k9 needs future

investigations. Table 6.2 shows results comparable with those of set A. The relaxed

pricing algorithm without any cut provides lower bounds from 0.48% to 6.44%

far from the optimal solution. The exact pricing algorithm between 0.00% and

2.81%. The use of 2-path cuts reduced the gaps: the relaxed pricing gap varies

between 0.00% and 4.23% and the exact pricing gap between 0.0% and 2.50%. The

contribution of elementary paths providing good lower bounds is more evident

in table 6.3. For example instance E-n22-k4 is solved at the root node of the

search tree by the exact pricing algorithm while the relaxed pricing algorithm has

a considerable gap (6.83% and 6.35%). It should be pointed out that this instance

is solved to optimality at the root node of the search tree by Fukasawa et al.

[79] using more sophisticated cut-generation algorithms. Gaps vary from 1.17% to

6.85% and from 0.57% and 6.35% for the relaxed pricing algorithm without and

with 2-path cuts, respectively. They vary from 0.00% to 2.40% and from 0.00% and

2.18% for the exact pricing algorithm without and with 2-path cuts, respectively.

Tables 6.4 to 6.6 show, as expected, that the exact pricing algorithm does not

represent the state-of-the-art algorithm for the CVRP. It should be noticed, how-

ever, that two instances of set A (A-38-k5 and A-45-k6) were solved to optimality

at the root node of the search tree while BCP did not. For other instances the

exact pricing algorithm is competitive only for a subset of instances. For other

instances it is dominated by the BCP algorithm. Most difficult instances have not

been solved by the exact pricing algorithm because the proposed branching deci-

sions do not help to close the gap in a reasonable number of iterations. Moreover

the pricing subproblem becomes harder to solve in the early nodes of the search

tree for quasi-unconstrained instances. It is to notice that the duality gap is always

acceptable. The worst gap is 2.55% while the average gap, for unsolved instances,

is 1.12%.

Conclusions The computational experience shows that column generation cou-

pled with the exact solution of the pricing problem allows to compute better lower

bounds compared with the relaxed pricing approach. The use of simple cut-

generation strategies (2-path cuts) gives limited benefits. It has been shown by

Fukasawa et al. [79] that more sophisticated cut-generation strategies are able to

close the duality gap in smaller amount of time. It is clear that, for unconstrained

routing problems, the branching decisions do not help to increase significantly the

lower bounds. This consideration suggests to embed both exact pricing algorithms

and cut-generation in the same algorithm in order to obtain better lower bounds.
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Instance IPopt BCP Exact pricing

Nodes T ime(s) Nodes T ime(s) Gap(%)

A-n37-k5 669 8 28.50 27 162.64 0.00

A-n37-k6 949 74 568.50 973 1017.13 0.00

A-n38-k5 730 52 39.00 1 1.16 0.00

A-n39-k5 822 11 250.50 1995 3419.61 0.00

A-n39-k6 831 11 147.00 2019 3719.11 0.00

A-n44-k6 937 6 135.00 69 182.22 0.00

A-n45-k6 944 11 255.00 1 7.84 0.00

A-n45-k7 1146 26 496.50 7 35.22 0.00

A-n46-k7 914 3 138.00 7 112.82 0.00

A-n48-k7 1073 8 249.00 135 954.70 0.00

A-n53-k7 1010 16 916.50 463 5132.70 0.00

A-n54-k7 1167 90 2113.50 7857 0.01

A-n55-k9 1073 7 126.00 391 978.10 0.00

A-n60-k9 1354 224 4620.00 4198 0.17

A-n61-k9 1034 121 2824.50 697 3128.10 0.00

A-n62-k8 1288 101 4653.00 5918 0.12

A-n63-k9 1616 49 1569.00 8911 0.31

A-n63-k10 1314 387 7482.00 2118 0.91

A-n64-k9 1401 648 16881.00 2081 2.55

A-n65-k9 1174 17 774.00 1159 0.55

A-n69-k9 1159 391 10756.50 991 0.71

A-n80-k10 1763 153 9696.00 59 0.07

Table 6.4: Search tree comparison - CVRP set A



80 6. Computational results: The CVRP

Instance IPopt BCP Exact pricing

Nodes T ime(s) Nodes T ime(s) Gap(%)

P-n16-k8 450 3 1.50 3 0.12 0.00

P-n19-k2 212 1 1.50 1 21.10 0.00

P-n20-k2 216 9 1.50 5 7.56 0.00

P-n21-k2 211 1 1.50 1 8.44 0.00

P-n22-k2 216 2 3.00 3 11.46 0.00

P-n22-k8 603 1 4.50 1 0.05 0.00

P-n23-k8 529 1 27.00 1 0.08 0.00

P-n40-k5 458 5 51.00 111 216.30 0.00

P-n45-k5 510 11 291.00 533 1072.53 0.00

P-n50-k7 554 7 214.50 235 336.12 0.00

P-n50-k8 631 1084 13908.00 5029 7321.32 0.00

P-n50-k10 696 65 456.00 433 297.19 0.00

P-n51-k10 741 22 157.50 181 225.15 0.00

P-n55-k7 568 450 6973.50 3511 0.18

P-n55-k8 588 196 2733.00 4881 0.17

P-n55-k10 694 1556 13614.00 7675 0.29

P-n55-k15 989 398 2916.00 3571 2773.52 0.00

P-n60-k10 744 52 855.00 181 524.32 0.00

P-n60-k15 968 76 663.00 85 59.19 0.00

P-n65-k10 792 23 633.00 167 1012.06 0.00

P-n70-k10 827 1752 36058.50 4451 0.36

P-n76-k4 593 59 858.00 2181 0.11

P-n76-k5 627 3399 21819.00 3415 0.44

P-n101-k4 681 23 1879.50 1025 1.01

Table 6.5: Search tree comparison - CVRP set P
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Instance IPopt BCP Exact pricing

Nodes T ime(s) Nodes T ime(s) Gap(%)

E-n13-k4 247 1 0.00 1 0.00 0.00

E-n22-k4 375 1 0.00 1 7.50 0.00

E-n23-k3 569 1 0.00 1 16.91 0.00

E-n30-k3 534 6 10.50 21 195.30 0.00

E-n31-k7 379 2 9.00 15 159.20 0.00

E-n33-k4 835 5 22.50 145 678.30 0.00

E-n51-k5 521 8 97.50 671 2195.40 0.00

E-n76-k7 682 1712 69780.00 5631 1.88

E-n76-k8 735 1031 34336.50 4923 1.01

E-n76-k10 830 4292 121083.00 6791 0.79

E-n76-k14 1021 6678 72955.50 1521 1.41

E-n101-k8 815 11622 1202944.50 3 1.09

E-n101-k14 1067 5848 174426.00 i 13 1.61

Table 6.6: Search tree comparison - CVRP set E

When the computation of exact pricing is too time consuming a good compromise

could be the partial relaxation of elementarity constraint: the decremental state

space relaxation algorithm, proposed in chapter 4, can be adapted to compute only

t-nodes cycle free paths where the number of critical nodes can be imposed to be

less than t. The most profitable mix of better pricing algorithms and better cut

generation algorithms will be the topic of future research.



Chapter 7

Computational results: The

VRPDC

7.1 Instances

The instance sets for the VRPDC used in the literature have been derived from

instance sets for the CVRP adding the pick-up requests of the customers. Other

instance sets have been derived from Solomon’s [61] data set for the CVRPTW

neglecting the time windows and adding the pick-up requests.

Since the VRPDC is a less studied variant of the CVRP there are no homoge-

neous and comparable results. In the reminder I will focus on results presented in

a previous work (Dell’Amico, Righini and Salani [46]). No other optimal methods

have been presented so far, although Angelelli and Mansini [13] presented an op-

timal method for the VRPDC with time windows and, in principle, this problem

covers the VRPDC.Dethloff [10] and Bianchessi and Righini [65] presented some

heuristics and meta-heuristics to solve the VRPDC where the same problem for-

mulation has been called VRP with Simultaneous Pickup and Delivery. I recall

that the VRPDC differs from the VRPPD. In VRPPD the pickup and the de-

livery operations associated with a single request are performed in two different

vertices because the source and the destination of the load to be carried are speci-

fied. In the VRPDC the delivery and pick-up are associated with the same vertex

and represent a quantity of good to be delivered and a quantity of waste to be

picked-up.

Class 1S was made of 18 instances generated as described by Toth and Vigo

[71]. The number of customers is equal to 20 or 40. Customer coordinates are

uniformly distributed in the intervals [0, 24000] for the x values and [0, 32000]

for the y values; the depot is located at (12000, 16000). The cost of each arc was

defined as the Euclidean distance rounded up to an integer value. Demands were

82
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generated at random from a normal distribution with mean value equal to 50 and

standard deviation equal to 20. The fraction of delivery customers is equal to 1
2
, 2

3

or 4
5

(this is indicated by the percentage values 50, 66 and 80 in the name of the

instances). The vehicles capacity varies in {100, 150, 200}.

Class 1C was obtained from class 1S using the following method: all demands

of the corresponding instance in class 1S were considered as delivery demands and

the pick-up demand of each customer i was computed as pi = (0.5 + r)di, where r

was taken from a uniform distribution in the interval [0,1].

Class 2S consists of 36 instances, obtained from four real world CVRP instances

of the VRPLIB with N equal to 20 or 40. For each CVRP instance nine VRPSDC

instances were generated, each one corresponding to a fraction of delivery customer

equal to 1
2
, 2

3
and 4

5
and to a vehicle capacity equal to 150, 200 and 300.

Class 2C was obtained from class 2S with the same technique as class 1C.

Class S consists of twelve instances derived from Solomon’s instances r101, c101

and rc101, originally proposed for the CVRPTW by Solomon [61]. I considered the

first 20 or 40 customers, I neglected the time-windows and I followed the method

proposed by Angelelli and Mansini [13] to generate composite demands: the de-

mands given in Solomon’s instances were assumed to represent delivery demands

di, while pick-up demands pi were generated as pi = b(1− γ) dic if i is even, and

pi = b(1+γ) dic if i is odd. For each instance in Solomon’s benchmark I generated

two VRPSDC instances with γ = 0.2 and γ = 0.8. Vehicles capacity was set to

100. The Euclidean distance between customers was rounded up to a multiple of

0.1 to guarantee that the triangular inequality held.

7.2 Computational results

Tables 7.1 to 7.11 report on the computational experiment performed on the in-

stances described above.

The root node lower bound comparison between instances solved with the re-

laxed pricing algorithm and the exact pricing algorithm is reported both with and

without the use of 2-path cuts.

Tables are organized as follows: the instance name (the instance name contains

the problem dimension and the distribution of delivery and pick-up requests), the

number of vehicles and the optimal solution are reported first; then the root node

lower bound LBr and LBc
r obtained with the relaxed pricing without and with the

use of 2-path cuts, respectively. Then the two percentage gaps Gr and Gc
r for the

relaxed pricing algorithm. Similarly for the exact pricing algorithm the root node

lower bound LBe and LBc
e without and with 2-path cuts and the percentage gaps

Ge and Gc
e.
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All the percentage gaps are computed as follows:

G = 100 · (UB − LB)/UB

where UB represents the best feasible solution available at the end of the compu-

tation. Table 7.6 reports on the average percentage gaps.

Tables 7.7 to 7.11 report on the comparison between the exact pricing algo-

rithm and the relaxed pricing algorithm. The comparison was made leaving other

algorithms and parameters unchanged, such as the branching decisions and the

cut generations, although the exact and the relaxed pricing algorithms can be

differently tuned.

It should be pointed out that differences between the results reported in [46] are

due to the different search strategy and to the fact that the minimum number of

vehicles was imposed while here it has been left free. An asterisk on the number of

vehicles means that the optimal solution uses one vehicle more than the minimum

required.

The computing time was limited to one hour.

Tables are organized as follows: the instance name and the optimal solution

are reported again for the sake of completeness. Then, for the two algorithms, the

total number of nodes of the search tree, the computing time (in seconds) and the

duality gap at the end of the computation are reported. The time limit was set to

two hours.

Table 7.1 shows that none of the instances where closed at the root node by

using the relaxed pricing algorithm without cuts. The use of 2-path cuts allowed

to close three instances at the root node with the relaxed pricing algorithm. On

the other hand the use of exact pricing allowed to solve three instances at the

root node of the search tree without cuts. The use of 2-path cuts increased their

number to nine. The worst percentage gap for the relaxed pricing is 3.85% while

for the exact pricing is 2.97%. The exact pricing algorithm allowed to solve nine

instances at the root node of the search tree while the relaxed one only three.

Table 7.2 shows similar results. Both the exact pricing algorithm and the

relaxed one allowed to solve several instances at the root node of the search with

the use of 2-path cuts because the C set is more constrained. The use of 2-path

cuts was useful for both algorithms. The worst percentage gap for the relaxed

pricing is 3.30% while for the exact pricing is 2.87%.

In table 7.3 the benefits of the exact solution of the pricing problem are more

evident. The worst gap of the relaxed pricing reaches 5.68% while for the exact

pricing it is under the 2.95%.

Table 7.4 shows that several instances have been solved at the root node of the

search tree by the exact pricing algorithm. The worst gap of the relaxed pricing is
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Instance K IPopt LBr LBc
r Gr Gc

r LBe LBc
e Ge Gc

e

1S 20 50 1 6 181689 180422 180845 0.70 0.46 181689 181689 0.00 0.00

1S 20 50 2 4 151472 150332 150776 0.75 0.46 150332 150776 0.75 0.46

1S 20 50 3 3 136107 132268 134877 2.82 0.90 135475 136107 0.46 0.00

1S 20 66 1 7 189396 189184 189396 0.11 0.00 189184 189396 0.11 0.00

1S 20 66 2 5 155853 154304 155462 0.99 0.25 155310 155853 0.35 0.00

1S 20 66 3 4 136489 133302 136489 2.33 0.00 136489 136489 0.00 0.00

1S 20 80 1 8 210732 205167 208436 2.64 1.09 205167 208436 2.64 1.09

1S 20 80 2 6 166408 163104 165389 1.99 0.61 163483 166129 1.76 0.17

1S 20 80 3 4 147820 143357 147019 3.02 0.54 147312 147820 0.34 0.00

1S 40 50 1 10 357430 346819 352953 2.97 1.25 346819 353559 2.97 1.08

1S 40 50 2 7 269590 261515 265254 3.00 1.61 266518 269388 1.14 0.07

1S 40 50 3 5 229044 221605 226771 3.25 0.99 225748 229044 1.44 0.00

1S 40 66 1 13 377279 372905 375233 1.16 0.54 375089 376809 0.58 0.12

1S 40 66 2 9 291008 279810 286857 3.85 1.43 285206 290311 1.99 0.24

1S 40 66 3 7 241347 233872 236652 3.10 1.95 239075 239401 0.94 0.81

1S 40 80 1 16 425911 424955 425911 0.22 0.00 425911 425911 0.00 0.00

1S 40 80 2 11 324920 316456 320881 2.60 1.24 321867 324920 0.94 0.00

1S 40 80 3 8 270313 261809 265735 3.15 1.69 268180 269767 0.79 0.20

Table 7.1: Lower bound comparison - VRPDC set 1S

Instance K IPopt LBr LBc
r Gr Gc

r LBe LBc
e Ge Gc

e

1C 20 50 1 11 265504 264918 265504 0.22 0.00 264918 265504 0.22 0.00

1C 20 50 2 8 206425 203609 206005 1.36 0.20 203609 206005 1.36 0.20

1C 20 50 3 6 171236 170984 171236 0.15 0.00 171166 171236 0.04 0.00

1C 20 66 1 14 298493 297476 298493 0.34 0.00 297476 298493 0.34 0.00

1C 20 66 2 7 192727 192727 192727 0.00 0.00 192727 192727 0.00 0.00

1C 20 66 3 6 178629 172726 176650 3.30 1.11 173500 176899 2.87 0.97

1C 20 80 1 14 304412 304412 304412 0.00 0.00 304412 304412 0.00 0.00

1C 20 80 2 8 218072 216148 218072 0.88 0.00 216148 218072 0.88 0.00

1C 20 80 3 6 177215 174937 175893 1.29 0.75 176767 177215 0.25 0.00

1C 40 50 1 23* 601817 597900 601817 0.65 0.00 597925 601817 0.65 0.00

1C 40 50 2 15 402309 397719 399231 1.14 0.77 397719 399231 1.14 0.77

1C 40 50 3 11 334830 326286 328114 2.55 2.01 331522 333265 0.99 0.47

1C 40 66 1 24 630257 629355 630257 0.14 0.00 629355 630257 0.14 0.00

1C 40 66 2 15 426517 421559 422152 1.16 1.02 421931 422403 1.08 0.96

1C 40 66 3 11 331459 321946 326486 2.87 1.50 327775 328942 1.11 0.76

1C 40 80 1 25 647539 647539 647539 0.00 0.00 647539 647539 0.00 0.00

1C 40 80 2 15 424368 421665 421828 0.64 0.60 421682 422171 0.63 0.52

1C 40 80 3 11 332957 329326 330639 1.09 0.70 332935 332957 0.01 0.00

Table 7.2: Lower bound comparison - VRPDC set 1C
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Instance K IPopt LBr LBc
r Gr Gc

r LBe LBc
e Ge Gc

e

2S 20 50 1 6 8769 8608 8731 1.84 0.43 8608 8731 1.84 0.43

2S 20 50 2 5* 7348 7348 7348 0.00 0.00 7348 7348 0.00 0.00

2S 20 50 3 3 6445 6283 6387 2.51 0.90 6415 6445 0.47 0.00

2S 20 66 1 7 9129 9129 9129 0.00 0.00 9129 9129 0.00 0.00

2S 20 66 2 5 7470 7470 7470 0.00 0.00 7470 7470 0.00 0.00

2S 20 66 3 4* 6890 6699 6828 2.77 0.90 6874 6874 0.23 0.23

2S 20 80 1 8 10707 10707 10707 0.00 0.00 10707 10707 0.00 0.00

2S 20 80 2 7* 8773 8773 8773 0.00 0.00 8773 8773 0.00 0.00

2S 20 80 3 4 7058 6989 7058 0.98 0.00 7058 7058 0.00 0.00

2S 40 50 1 10 18282 18220 18220 0.34 0.34 18220 18222 0.34 0.33

2S 40 50 2 8 14603 14402 14495 1.38 0.74 14549 14592 0.37 0.08

2S 40 50 3 5 11610 10956 11012 5.63 5.15 11268 11304 2.95 2.64

2S 40 66 1 13* 17932 17699 17805 1.30 0.71 17823 17849 0.61 0.46

2S 40 66 2 9 15307 15001 15094 2.00 1.39 15091 15176 1.41 0.86

2S 40 66 3 6 11725 11243 11405 4.11 2.73 11702 11725 0.20 0.00

2S 40 80 1 17 20665 20653 20665 0.06 0.00 20653 20665 0.06 0.00

2S 40 80 2 13* 17201 16629 16887 3.33 1.83 16969 17056 1.35 0.84

2S 40 80 3 8 13317 12561 12750 5.68 4.26 13042 13063 2.07 1.91

Table 7.3: Lower bound comparison - VRPDC set 2S

Instance K IPopt LBr LBc
r Gr Gc

r LBe LBc
e Ge Gc

e

2C 20 50 1 11 12720 12720 12720 0.00 0.00 12720 12720 0.00 0.00

2C 20 50 2 8* 10054 10054 10054 0.00 0.00 10054 10054 0.00 0.00

2C 20 50 3 6 8387 8320 8372 0.80 0.18 8375 8387 0.14 0.00

2C 20 66 1 12 14578 14539 14578 0.27 0.00 14539 14578 0.27 0.00

2C 20 66 2 9* 10861 10838 10861 0.21 0.00 10838 10861 0.21 0.00

2C 20 66 3 5 8160 7822 7915 4.14 3.00 8018 8079 1.74 0.99

2C 20 80 1 10 12802 12802 12802 0.00 0.00 12802 12802 0.00 0.00

2C 20 80 2 8 10087 9901 10036 1.84 0.51 9970 10087 1.16 0.00

2C 20 80 3 5 8317 8051 8220 3.20 1.17 8225 8317 1.11 0.00

2C 40 50 1 23* 26988 26988 26988 0.00 0.00 26988 26988 0.00 0.00

2C 40 50 2 17* 21710 21490 21571 1.01 0.64 21513 21581 0.91 0.59

2C 40 50 3 10 15523 14968 15066 3.58 2.94 15310 15323 1.37 1.29

2C 40 66 1 22 25981 25971 25981 0.04 0.00 25981 25981 0.00 0.00

2C 40 66 2 16* 21317 20994 21202 1.52 0.54 21056 21234 1.22 0.39

2C 40 66 3 10 15293 14771 14949 3.41 2.25 15072 15114 1.45 1.17

2C 40 80 1 22* 26122 26122 26122 0.00 0.00 26122 26122 0.00 0.00

2C 40 80 2 16 20652 20426 20516 1.09 0.66 20436 20521 1.05 0.63

2C 40 80 3 10 15365 14930 15121 2.83 1.59 15292 15317 0.48 0.31

Table 7.4: Lower bound comparison - VRPDC set 2C
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Instance K IPopt LBr LBc
r Gr Gc

r LBe LBc
e Ge Gc

e

c101 20 02 4 272 266 269 2.21 1.10 268 269 1.47 1.10

c101 20 08 4 279 273 275 2.15 1.43 275 277 1.43 0.72

r101 20 02 3 329 320 321 2.74 2.43 323 324 1.82 1.52

r101 20 08 3 342 324 329 5.26 3.80 334 336 2.34 1.75

rc101 20 02 5 428 426 428 0.47 0.00 428 428 0.00 0.00

rc101 20 08 5 458 448 454 2.18 0.87 448 454 2.18 0.87

c101 40 02 8 551 529 532 3.99 3.45 532 536 3.45 2.72

c101 40 08 8 569 548 553 3.69 2.81 555 558 2.46 1.93

r101 40 02 6 601 584 589 2.83 2.00 593 594 1.33 1.16

r101 40 08 7* 627 610 612 2.71 2.39 621 624 0.96 0.48

rc101 40 02 9 886 836 878 5.64 0.90 841 881 5.08 0.56

rc101 40 08 9 926 860 914 7.13 1.30 867 920 6.37 0.65

Table 7.5: Lower bound comparison - VRPDC set S

Instance set Avg. Gr(%) Avg. Gc
r(%) Avg. Ge(%) Avg. Gc

e(%)

1S 20 1.71 0.48 0.71 0.19

1S 40 2.59 1.19 1.20 0.28

1C 20 0.84 0.23 0.66 0.13

1C 40 1.14 0.73 0.64 0.39

2S 20 0.90 0.25 0.28 0.07

2S 40 2.65 1.90 1.04 0.79

2C 20 1.16 0.54 0.51 0.11

2C 40 1.50 0.96 0.72 0.49

S 20 2.50 1.61 1.54 0.99

S 40 4.33 2.14 3.27 1.25

Table 7.6: Lower bound comparison



88 7. Computational results: The VRPDC

Instance K IPopt Relaxed Pricing Exact pricing

Nodes T (s) G(%) Nodes T (s) G(%)

1S 20 50 1 6 181689 11 0.3 0.00 1 0.04 0.00

1S 20 50 2 4 151472 17 3.08 0.00 5 0.58 0.00

1S 20 50 3 3 136107 9 6.82 0.00 1 2.13 0.00

1S 20 66 1 7 189396 1 0.08 0.00 1 0.09 0.00

1S 20 66 2 5 155853 3 0.77 0.00 1 0.59 0.00

1S 20 66 3 4 136489 1 2.35 0.00 1 1.41 0.00

1S 20 80 1 8 210732 11 0.23 0.00 11 0.26 0.00

1S 20 80 2 6 166408 11 1.12 0.00 3 0.4 0.00

1S 20 80 3 4 147820 9 6.68 0.00 1 2.61 0.00

1S 40 50 1 10 357430 1389 361.36 0.00 377 82.41 0.00

1S 40 50 2 7 269590 549 669.41 0.00 5 20.09 0.00

1S 40 50 3 5 229044 25 183.74 0.00 1 148.06 0.00

1S 40 66 1 13 377279 73 10.82 0.00 5 1.49 0.00

1S 40 66 2 9 291008 537 358.59 0.00 11 38.44 0.00

1S 40 66 3 7 241347 329 637.13 0.00 17 90.7 0.00

1S 40 80 1 16 425911 1 0.43 0.00 1 0.13 0.00

1S 40 80 2 11 324920 1949 830.87 0.00 1 9.46 0.00

1S 40 80 3 8 270313 4395 0.04 9 39.62 0.00

Table 7.7: Search tree comparison - VRPDC set 1S

4.14% while for the exact pricing it is 1.74%.

Table 7.5 shows that on instances derived from Solomon’s sets the use of cutting

planes is more useful than the exact solution of the pricing problem. Both the

exact and the relaxed algorithm have a significant percentage gap without cuts.

The worst gap is 7.13% and 6.37% for the relaxed and exact pricing without cuts,

respectively. The use of 2-path cuts reduced the worst gap to 3.80% and 2.72%.

The average gaps table 7.6 shows that both the use of exact pricing and 2-path

cuts is crucial to increase the lower bound at the root node of the search tree.

There is no dominance between the two methods (Gc
rvs.Ge).

Tables 7.7 to 7.11 show the dominance of the exact pricing algorithm without

cuts. These results complete the conclusions presented in our previous work [46]

with a more deep knowledge of the problem. In this work I analyzed more deeply

the pricing problem and I was able to implement more efficient algorithms for its

solution (see chapter 4). The bidirectional bounded algorithm based on the concept

of critical resources allowed to speed up the computation of both elementary and

non-elementary paths. It should be noticed that also for instances solved at the

root node of the search tree by both algorithms the exact pricing algorithm is

faster. This depends on the fact that the exact pricing algorithm did not find any
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Instance K IPopt Relaxed Pricing Exact pricing

Nodes T (s) G(%) Nodes T (s) G(%)

1C 20 50 1 11 265504 1 0.01 0.00 1 0.01 0.00

1C 20 50 2 8 206425 3 0.05 0.00 3 0.05 0.00

1C 20 50 3 6 171236 1 0.3 0.00 1 0.12 0.00

1C 20 66 1 14 298493 1 0.01 0.00 1 0.01 0.00

1C 20 66 2 7 192727 1 0.01 0.00 1 0.02 0.00

1C 20 66 3 6 178629 71 2.04 0.00 43 1.13 0.00

1C 20 80 1 14 304412 1 0 0.00 1 0.01 0.00

1C 20 80 2 8 218072 1 0.02 0.00 1 0.03 0.00

1C 20 80 3 6 177215 15 0.95 0.00 1 0.3 0.00

1C 40 50 1 23* 601817 1 0.04 0.00 1 0.05 0.00

1C 40 50 2 15 402309 81 4.68 0.00 51 3.03 0.00

1C 40 50 3 11 334830 2085 252.54 0.00 31 16.4 0.00

1C 40 66 1 24 630257 1 0.02 0.00 1 0.02 0.00

1C 40 66 2 15 426517 39 3.32 0.00 37 2.94 0.00

1C 40 66 3 11 331459 1839 299.71 0.00 145 43.22 0.00

1C 40 80 1 25 647539 1 0.01 0.00 1 0.01 0.00

1C 40 80 2 15 424368 55 3.86 0.00 25 2.33 0.00

1C 40 80 3 11 332957 8633 986.41 0.00 1 1.94 0.00

Table 7.8: Search tree comparison - VRPDC set 1C

negative reduced cost columns in the earlier iterations of the column generation

process while the relaxed pricing algorithm, that clearly is faster than the exact

one, requires more column generation iterations. All 20 nodes instances of sets 1S

to 2C have been solved in less than 3 seconds by the exact pricing algorithm while

the 40 nodes instances required at most 166 seconds and 445 search tree nodes. The

instances derived from the Solomon’s sets seem to be more difficult. In particular

instance c 101 40 02 has not been solved within one hour of computation by both

algorithm. Fixing the number of vehicles to 8 (that corresponds to the minimum

number of vehicles required), the exact pricing algorithm required 993 seconds and

201 nodes of the search tree while the relaxed pricing algorithm required 1918

seconds and 719 nodes.

Conclusions Computational results showed that the exact pricing algorithm

outperforms the relaxed pricing one. This complete our previous conclusions (see

[46]) giving to the algorithms that solve the pricing problem the crucial role in the

solution of the VRPDC. The research performed on the pricing problem (see 4)

allowed to devise more efficient algorithms both exact and relaxed. It has been

showed that the lower bound increase at the early nodes of the search tree is useful
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Instance K IPopt Relaxed Pricing Exact pricing

Nodes T (s) G(%) Nodes T (s) G(%)

2S 20 50 1 6 8769 5 0.22 0.00 5 0.22 0.00

2S 20 50 2 5* 7348 1 0.08 0.00 1 0.05 0.00

2S 20 50 3 3 6445 7 5.4 0.00 1 0.88 0.00

2S 20 66 1 7 9129 1 0.04 0.00 1 0.04 0.00

2S 20 66 2 5 7470 1 0.04 0.00 1 0.04 0.00

2S 20 66 3 4* 6890 19 6.39 0.00 3 0.94 0.00

2S 20 80 1 8 10707 1 0.03 0.00 1 0.03 0.00

2S 20 80 2 7* 8773 1 0.1 0.00 1 0.09 0.00

2S 20 80 3 4 7058 1 1.94 0.00 1 0.16 0.00

2S 40 50 1 10 18282 59 20.73 0.00 31 11.14 0.00

2S 40 50 2 8 14603 27 18.9 0.00 5 7.2 0.00

2S 40 50 3 5 11610 991 1458.86 0.00 5 110.03 0.00

2S 40 66 1 13* 17932 9 3.41 0.00 5 1.5 0.00

2S 40 66 2 9 15307 161 80.2 0.00 31 31.51 0.00

2S 40 66 3 6 11725 1649 2644.58 0.00 1 25.8 0.00

2S 40 80 1 17 20665 1 0.28 0.00 1 0.29 0.00

2S 40 80 2 13* 17201 15347 0.22 445 166.34 0.00

2S 40 80 3 8 13317 7441 1.33 73 147.41 0.00

Table 7.9: Search tree comparison - VRPDC set 2S

to speed up the computation. This goal can be achieved with the use of an exact

pricing algorithm and a cutting plane algorithm. It will be the topic of future

research to find the best mix of these two strategies.
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Instance K IPopt Relaxed Pricing Exact pricing

Nodes T (s) G(%) Nodes T (s) G(%)

2C 20 50 1 11 12720 1 0.02 0.00 1 0.01 0.00

2C 20 50 2 8* 10054 1 0.04 0.00 1 0.04 0.00

2C 20 50 3 6 8387 5 0.8 0.00 1 0.22 0.00

2C 20 66 1 12 14578 1 0.03 0.00 1 0.03 0.00

2C 20 66 2 9* 10861 1 0.07 0.00 1 0.06 0.00

2C 20 66 3 5 8160 79 4.3 0.00 17 1.89 0.00

2C 20 80 1 10 12802 1 0.01 0.00 1 0.02 0.00

2C 20 80 2 8 10087 11 0.35 0.00 1 0.11 0.00

2C 20 80 3 5 8317 19 3.52 0.00 1 0.49 0.00

2C 40 50 1 23* 26988 1 0.05 0.00 1 0.05 0.00

2C 40 50 2 17* 21710 35 4.58 0.00 31 4.22 0.00

2C 40 50 3 10 15523 13933 0.28 155 48.12 0.00

2C 40 66 1 22 25981 1 0.13 0.00 1 0.06 0.00

2C 40 66 2 16* 21317 97 6.56 0.00 45 5.42 0.00

2C 40 66 3 10 15293 5195 1451.56 0.00 129 62.32 0.00

2C 40 80 1 22* 26122 1 0.12 0.00 1 0.07 0.00

2C 40 80 2 16 20652 79 10.48 0.00 69 7.77 0.00

2C 40 80 3 10 15365 535 163.18 0.00 7 7.18 0.00

Table 7.10: Search tree comparison - VRPDC set 2C

Instance K IPopt Relaxed Pricing Exact pricing

Nodes T (s) G(%) Nodes T (s) G(%)

c101 20 02 4 272 49 7.61 0.00 25 5.43 0.00

c101 20 08 4 279 11 5.65 0.00 3 2.42 0.00

r101 20 02 3 329 75 14.06 0.00 17 2.59 0.00

r101 20 08 3 342 149 57.2 0.00 17 7.59 0.00

rc101 20 02 5 428 1 0.43 0.00 1 0.12 0.00

rc101 20 08 5 458 59 3.03 0.00 37 1.59 0.00

c101 40 02 8 551 16749 1.27 8891 0.36

c101 40 08 8 569 7457 0.88 1873 2250.57 0.00

r101 40 02 6 601 145 115.22 0.00 7 41.14 0.00

r101 40 08 7* 627 3819 0.63 69 576.7 0.00

rc101 40 02 9 886 267 71.52 0.00 63 36.13 0.00

rc101 40 08 9 926 2703 1341.36 0.00 235 250.53 0.00

Table 7.11: Search tree comparison - VRPDC set S



Chapter 8

Computational results: The

CVRPTW

8.1 Instances

The test instances proposed by Solomon [61] are the most commonly used to evalu-

ate algorithms for the CVRPTW. These instances are divided into two sets. Prob-

lem set 1 allows routes with approximately 5 to 10 customers due to capacity and

time constraints. Problem set 2 is less constrained and allows routes with more

than 30 customers. Both sets 1 and 2 are made of customers distributed in a

Euclidean plane. The two sets include three subsets of instances: the r-instances

where customers are located randomly, the c-instances where customers are located

in clusters and rc-instances where some customers are clustered and some others

are randomly distributed. Each problem has 100 customers but smaller instances

with 25 and 50 can be derived considering only the first customers as proposed by

Kohl et al. [69]. The coordinates of the customers are the same for all problems

within each type. The difference is in the width and the placement of the time win-

dow for each customer. Problem set 1 has 87 instances and most of them have been

solved to optimality quite easily but there are some with 100 customers (r108, r112

and rc106) still unsolved. Recently Irnich and Villeneuve [83] solved to optimality

four unsolved instances with 100 customers (r104, rc104, rc107 and rc108) in a

huge amount of time (from 42770 to 986809 seconds on a 600MHz PC). Problem

set 2 is the most difficult: while the c-set has been solved entirely except instance

c204, the r-set and the rc-set have been solved partially and only for 25 and 50

customers instances. Recently Chabrier [1] solved some difficult 100 customers

instances (rc202 and rc205) in more than four hours of computation on a 1.5GHz

Pentium IV PC. Another very recent publication of Kallehauge et al. [5] reported

new computational results obtained by their Lagrangean branch-and-cut-and-price

92
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algorithm on a Sun Fire 15K equipped with 384GB of RAM.

The convention used in this thesis for the calculation of cost and travel time is

the same of Kohl et al. [69]. Cost and travel time are computed from the Euclidean

distance with one decimal point truncation. Let (xi, yi) and (xj, yj) respectively

the coordinates for customer i and j; then

cij =
b10

√

(xi − xj)2 + (yi − yj)2c

10
.

Travel times are calculated as tij = cij + sti, where sti represents the service time

at customer i.

8.2 Computational results

The main purpose of the experiments on the CVRPTW reported here was to

test the effectiveness of column generation when the pricing problem is solved to

optimality with the dynamic programming algorithm described in chapter 4. This

is done by a comparison with the relaxed pricing approach used in literature by the

state-of-the-art algorithms by Kohl et al. [69], Cook and Rich [90] and Irnich and

Villeneuve [83]. Also the comparison with Kallehauge et al. [5] is reported although

the authors proposed a different approach to the solution of the CVRPTW.

The experiments are dedicated to the comparison of the lower bounds and

the overall performances of the Branch-and-Price algorithms. The lower bound is

“implementation-independent” and gives information on the strength of the formu-

lation solved. On the contrary the computing time depends on the implementation

and the tuning of the algorithm parameters

Tables 8.1 to 8.9 report on the experimental comparison between two branch-

and-price-based algorithms. The first one solves the pricing problem with the

relaxed dynamic programming algorithm with k-cycle elimination and k-cuts. The

second solves the pricing problem with the decremental state space relaxation

algorithm.

The results for the relaxed pricing have been taken from the papers by Kohl et

al. [69], Cook and Rich [90], Irnich and Villeneuve [83] and Kallehauge et al. [5].

The papers of Kohl et al. [69] and Cook and Rich [90] provided the results for set

1, Irnich and Villeneuve [83] provided the best results for some instances of set 2

and Kallehauge et al. [5] provided additional results for both sets.

8.2.1 Lower bound comparison

Tables are organized as follows: the instance name, the number of vehicles and

the optimal solution (IPopt, when known) are reported first. Then the best known
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lower bound for relaxed pricing algorithms without cuts (LBr) and with cuts (LBc
r)

among the results of the cited papers at the root node of the search tree for the

instances of set 1. In the tables results by Kohl et al. [69] are marked with KD,

by Cook and Rich [90] with CR, by Irnich and Villeneuve [83] with IV and by

Kallehauge et al. [5] with KL. When the lower bound is not reported by the

cited papers I report the lower bound computed with my implementation of the

relaxed pricing algorithm where 2-cycle elimination is used (marked with SA in

the tables). For the instances of set 2 only the lower bound at the root node

with 2-cycle elimination but without any cutting plane is available since no author

provided computational studies on relaxed pricing with the use of k-path cuts for

set 2. Irnich and Villeneuve [83] provided some new results on set 2 with the use

of 2-cuts but they did not report any lower bound. Lower bounds marked with

C in the tables have been obtained from Chabrier [1]. Other lower bounds have

been obtained from the computational study of Kallehauge et al. [5]. When no

lower bounds are available I report the ones obtained with my implementation of

relaxed pricing.

For the experimental comparison of the lower bounds obtained with the algo-

rithms proposed in this thesis I report the lower bound at the root node before

and after the use of 2-cuts: LBe and LBc
e respectively, the percentage distance

G between LBr and LBe and the percentage distance Gc between LBc
r and LBc

e,

computed as follows:

G =
LBe − LBr

LBr

, Gc =
LBc

e − LBc
r

LBc
r

.

Results reported in bold face mean that the exact pricing allowed to obtain the

optimal solution at the root node of the search tree while the relaxed pricing did

not.

The lower bound and time comparison tables for the c-instances of set 1 have not

been reported since all algorithms provided a root node lower bound equal to the

optimal solution and therefore the comparison is not significant. For all instances

of this set the computing time is favourable to the relaxed pricing algorithm that

is faster than the exact one. For the same reason for the c-instances of set 2 only

the lower bound comparison for some instances has been reported.

Results for r-instances of set 1 show that the lower bound improvement is less

than 2.77. The use of elementary paths always produces better lower bounds with

and without the use of 2-cuts. It should be pointed out that the best root node

lower bounds of column LBc
r have been obtained with the use of k-cuts with k ≤ 6

(see Cook and Rich [90]).

Table 8.2 shows that the lower bound improvement is always favourable to

elementary paths except for instance 101 with 100 customers where k-cuts, with
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Instance K IPopt LBr LBc
r LBe LBc

e G Gc

R101.25 8 617.1 617.1 617.1 KD 617.1 617.1 0.00 0.00

R101.50 12 1044.0 1043.3 1044.0 KD 1043.4 1044.0 0.01 0.00

R101.100 20 1637.7 1631.1 1634.0 KD 1633.1 1636.0 0.12 0.12

R102.25 7 547.1 546.3 547.1 KD 546.4 547.1 0.02 0.00

R102.50 11 909.0 909.0 909.0 KD 909.0 909.0 0.00 0.00

R102.100 18 1466.6 1466.6 1466.6 KD 1466.6 1466.6 0.00 0.00

R103.25 5 454.6 454.6 454.6 KD 454.6 454.6 0.00 0.00

R103.50 9 772.9 765.9 767.3 CR 769.3 769.3 0.44 0.26

R103.100 14 1208.7 1206.3 1206.3 CR 1206.9 1206.9 0.05 0.05

R104.25 4 416.9 416.9 416.9 KD 416.9 416.9 0.00 0.00

R104.50 6 625.4 616.5 620.7 CR 619.1 620.8 0.42 0.02

R104.100 949.1 950.9 KL 953.1 955.2 0.42 0.45

R105.25 6 530.5 530.5 530.5 KD 530.5 530.5 0.00 0.00

R105.50 9 899.3 892.1 893.6 CR 892.2 893.7 0.01 0.01

R105.100 15 1355.3 1346.1 1349.3 CR 1347.6 1350.1 0.11 0.06

R106.25 3 465.4 457.3 465.4 KD 457.3 465.4 0.00 0.00

R106.50 5 793.0 791.3 793.0 KD 791.4 793.0 0.01 0.00

R106.100 13 1234.6 1226.4 1227.4 CR 1227.0 1227.9 0.05 0.04

R107.25 4 424.3 422.9 424.3 KD 424.3 424.3 0.33 0.00

R107.50 7 711.1 704.4 705.8 CR 707.4 707.6 0.43 0.26

R107.100 11 1064.6 1051.8 1051.8 KL 1053.0 1054.3 0.11 0.24

R108.25 4 397.3 396.1 396.7 KL 396.9 397.3 0.20 0.15

R108.50 6 617.7 588.9 595.6 KL 594.7 596.4 0.98 0.13

R108.100 907.1 910.6 KL 913.6 921.7 0.72 1.22

R109.25 5 441.3 441.3 441.3 KD 441.3 441.3 0.00 0.00

R109.50 8 786.8 775.0 776.2 CR 775.4 776.7 0.05 0.06

R109.100 13 1146.9 1130.5 1133.1 KL 1134.3 1135.1 0.34 0.18

R110.25 4 444.1 437.3 437.9 KL 438.4 438.8 0.25 0.21

R110.50 7 697.0 692.5 694.1 CR 695.4 695.4 0.42 0.19

R110.100 12 1068.0 1048.4 1048.4 KL 1055.6 1056.0 0.69 0.72

R111.25 5 428.8 423.7 423.7 KD 427.3 428.8 0.85 1.20

R111.50 7 707.2 691.8 692.6 CR 696.3 696.6 0.65 0.58

R111.100 12 1048.7 1032.0 1032.0 KL 1034.8 1034.9 0.27 0.28

R112.25 4 393.0 384.2 384.4 KD 387.1 388.0 0.75 0.94

R112.50 6 630.2 607.2 612.3 CR 614.9 615.2 1.27 0.47

R112.100 919.1 922.3 KL 926.8 936.5 0.84 1.54

Table 8.1: Lower bound comparison - VRPTW class R1
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Instance K IPopt LBr LBc
r LBe LBc

e G Gc

RC101.25 4 461.1 406.6 461.1 KD 406.7 461.1 0.02 0.00

RC101.50 8 944.0 850.0 944.0 CR 944.0 944.0 11.05 0.00

RC101.100 15 1619.8 1584.0 1616.9 CR 1584.1 1607.4 0.01 -0.58

RC102.25 3 351.8 351.8 351.8 KD 351.8 351.8 0.00 0.00

RC102.50 7 822.5 719.9 813.0 CR 722.3 813.8 0.33 0.10

RC102.100 14 1457.4 1403.6 1403.6 CR 1406.3 1439.8 0.19 2.58

RC103.25 3 332.8 332.0 332.0 KD 332.8 332.8 0.24 0.24

RC103.50 6 710.9 643.1 710.1 CR 646.6 710.9 0.54 0.11

RC103.100 11 1258.0 1218.4 1218.4 CR 1225.6 1231.9 0.59 1.11

RC104.25 3 306.6 305.8 305.8 KD 306.6 306.6 0.26 0.26

RC104.50 5 545.8 543.7 543.7 CR 545.8 545.8 0.39 0.39

RC104.100 10 1132.3 IV 1094.3 1112.3 KL 1101.9 1102.4 0.69 -0.89

RC105.25 4 411.3 410.9 410.9 KD 411.3 411.3 0.10 0.10

RC105.50 8 855.3 754.4 853.6 CR 762.9 855.1 1.13 0.18

RC105.100 15 1513.7 1471.1 1509.7 CR 1472 1509.8 0.06 0.01

RC106.25 3 345.5 342.8 343.2 KD 345.5 345.5 0.79 0.67

RC106.50 6 723.2 664.4 716.5 CR 664.5 720.0 0.02 0.49

RC106.100 13 1401.2 1308.7 1332.5 KL 1318.8 1335.4 0.77 0.22

RC107.25 3 298.3 298.3 298.3 KD 298.3 298.3 0.00 0.00

RC107.50 6 642.7 591.4 631.5 CR 603.6 640.1 2.06 1.36

RC107.100 12 1207.8 IV 1170.6 1178.4 KL 1183.4 1179.5 1.09 0.09

RC108.25 3 294.5 293.7 294.5 KD 294.5 294.5 0.27 0.00

RC108.50 6 598.1 538.9 587.1 CR 544.9 596.6 1.11 1.62

RC108.100 11 1114.2 IV 1063.0 1091.5 KL 1073.5 1089.1 0.99 -0.22

Table 8.2: Lower bound comparison - VRPTW class RC1

Instance K IPopt LBr LBe G

C204.25 3 213.1 211.0KL 213.1 1.00

C204.100 3 588.1IV 581.1SA 583.2 0.36

C205.50 5 359.8 359.0KL 359.8 0.22

C206.50 5 359.8 359.0KL 359.8 0.22

C207.25 3 214.5 214.4KL 214.5 0.05

Table 8.3: Lower bound comparison - VRPTW class C2
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Instance K IPopt LBr LBc
r LBe LBc

e G Gc

R201.25 4 463.3 460.1 460.1 460.1 460.1 0.00 0.00

R201.50 6 791.9 788.4 791.9 791.9 791.9 0.44 0.00

R201.100 8 1143.2 1136.2 1138.6 1140.1 1141.2 0.34 0.23

R202.25 4 410.5 406.3 408.3 408.6 410.5 0.57 0.54

R202.50 5 698.5 692.7 696.5 695.1 697.1 0.35 0.09

R202.100 1009.8 1009.8 1011.2 1011.5 0.14 0.17

R203.25 3 391.4 379.8 381.6 391.4 391.4 3.05 2.57

R203.50 5 605.3 590.9 593.4 599.1 600.6 1.39 1.21

R203.100 846.4 847 885.1 899.5 4.57 6.20

R204.25 2 355.0 333.0 335.3 352.0 352.0 5.71 4.98

R204.50 474.5 482.3 505.3 505.7 6.49 4.85

R205.25 3 393.0 381.2 388.4 390.6 390.6 2.47 0.57

R205.50 4 690.1 666.6 672.3 682.9 683.5 2.45 1.67

R205.100 916.9 923

R206.25 3 374.4 363.1 365.9 373.6 373.6 2.89 2.10

R206.50 4 632.4 609.5 611.3 626.4 627.1 2.77 2.58

R206.100 835.3 840.7

R207.25 3 361.6 347.5 349.7 361.0 361.0 3.88 3.23

R207.50 539.0 544.3 564.1 566.2 4.66 4.02

R208.25 1 328.2 318.1 318.9 328.2 328.2 3.18 2.92

R208.50 462.4 471.5 485.7 486.1 5.04 3.10

R209.25 2 370.7 353.8 358.3 364.2 364.2 2.94 1.65

R209.50 4 600.6 582.9 588.4 598.5 599.9 2.68 1.95

R209.100 819.8 823.7

R210.25 3 404.6 395.8 397.9 404.6 404.6 2.22 1.68

R210.50 4 645.6 624.4 624.4 636.1 639.8 1.87 2.47

R210.100 849.4 855.8

R211.25 2 350.9 330.1 330.4 341.4 345.7 3.42 4.63

R211.50 3 535.5 507.9 512.5 528.7 529.9 4.10 3.40

R211.100 705.8 710.7

Table 8.4: Lower bound comparison - VRPTW class R2
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Instance K IPopt LBr LBc
r LBe LBc

e G Gc

RC201.25 3 360.2 356.6 360.2 360.2 360.2 1.01 0.00

RC201.50 5 684.8 670.1 681.9 684.8 684.8 2.19 0.43

RC201.100 9 1261.8 1240.3 1253.4 1256.0 1257.4 1.27 0.32

RC202.25 3 338.0 290.4 313.3 338.0 338.0 16.39 7.88

RC202.50 5 613.6 504.1 548.2 613.6 613.6 21.72 11.93

RC202.100 8 1092.3 1004.3 1013.8 1088.1 1089.5 8.34 7.47

RC203.25 3 326.9 214.4 260.8 326.9 326.9 52.47 25.35

RC203.50 4 555.3 409.2 480.0 555.3 555.3 35.70 15.69

RC203.100 815.2 831.9

RC204.25 3 299.7 188.5 244.8 299.7 299.7 58.99 22.43

RC205.25 3 338.0 307.6 320.7 338.0 338.0 9.88 5.39

RC205.50 5 630.2 541.5 579.9 630.2 630.2 16.38 8.67

RC205.100 7 1154.0 1056.1 1070.8 1147.7 1149.2 8.67 7.32

RC206.25 3 324.0 250.1 288.9 324.0 324.0 29.55 12.15

RC206.50 5 610.0 441.3 532.1 610.0 610.0 38.23 14.64

RC206.100 952.4 982.8

RC207.25 3 298.3 217.9 263.8 298.3 298.3 36.90 13.08

RC207.50 4 558.6 390.8 468.8 558.6 558.6 42.94 19.16

RC207.100 866.6 877.8

RC208.25 2 269.1 169.6 233.0 269.1 269.1 58.67 15.49

RC208.50 3 476.7 470.4 473.2

Table 8.5: Lower bound comparison - VRPTW class RC2
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Instance Solution Relaxed Pricing Exact Pricing

K IP Nodes T (s) Nodes T (s) G(%)

R101.25 8 617.1 1 0.02 KD 1 0.11 0.00

R101.50 12 1044.0 1 0.07 KD 1 0.53 0.00

R101.100 20 1637.7 17 2.15 KD 23 14.78 0.00

R102.25 7 547.1 1 0.04 KD 1 0.14 0.00

R102.50 11 909.0 1 0.26 KD 1 1.13 0.00

R102.100 18 1466.6 1 7.20 KL 1 27.49 0.00

R103.25 5 454.6 1 0.06 KD 1 0.34 0.00

R103.50 9 772.9 41 4.04 KD 11 11.37 0.00

R103.100 14 1208.7 39 118.66 CR 33 256.60 0.00

R104.25 4 416.9 1 0.09 KD 1 0.43 0.00

R104.50 6 625.4 74 102.86 CR 13 187.59 0.00

R104.100 11 971.5 5396 88474.98 IV 33 0.97

R105.25 6 530.5 1 0.02 KD 1 0.16 0.00

R105.50 9 899.3 13 0.46 KD 5 2.43 0.00

R105.100 11 1355.3 78 27.03 KD 35 49.17 0.00

R106.25 6 465.4 1 0.09 KD 1 0.40 0.00

R106.50 9 793.0 1 0.61 KD 1 3.70 0.00

R106.100 15 1234.6 760 2236.03 CR 217 555.03 0.00

R107.25 4 424.3 1 0.10 KD 1 0.38 0.00

R107.50 7 711.1 65 6.72 KD 21 26.14 0.00

R107.100 11 1064.6 283 0.23

R108.25 4 397.3 3 1.30 KD 1 1.23 0.00

R108.50 6 617.7 41 1.29

R108.100 9 (960.88) 11 19.57

R109.25 5 444.3 1 0.03 KD 1 0.20 0.00

R109.50 8 786.8 189 10.19 KD 7 25.43 0.00

R109.100 13 1146.9 4005 53009.90 KD 3305 0.03

R110.25 4 444.1 25 0.41 KD 11 2.13 0.00

R110.50 7 697.0 5 1.48 KD 13 9.28 0.00

R110.100 12 1068.0 2307 0.78

R111.25 4 428.8 3 0.14 KD 1 0.88 0.00

R111.50 6 707.2 199 76.38 CR 99 94.79 0.00

R111.100 1048.7 1154 1.48

R112.25 4 393.0 9 1.02 KD 9 8.25 0.00

R112.50 6 630.2 5263 4749.60 KL 711 0.32

R112.100 9 (973.6) 19 4.71

Table 8.6: Computational results - VRPTW class R1
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Instance Solution Relaxed Pricing Exact Pricing

K IP Nodes T (s) Nodes T (s) G(%)

RC101.25 4 461.1 1 0.05 KD 1 0.38 0.00

RC101.50 8 944.0 3 0.78 KD 1 2.87 0.00

RC101.100 15 1619.8 11 9.70 KD 239 145.45 0.00

RC102.25 3 351.8 1 0.04 KD 1 0.64 0.00

RC102.50 7 822.5 507 46.98 KD 159 41.39 0.00

RC102.100 14 1457.4 5815 1.67

RC103.25 3 332.8 3 0.28 KD 1 0.73 0.00

RC103.50 6 710.9 3 1.77 KD 1 17.32 0.00

RC103.100 11 1258.0 1397 0.72

RC104.25 3 306.6 7 0.48 KD 1 0.46 0.00

RC104.50 5 545.8 17 9.42 CR 1 38.79 0.00

RC104.100 10 1132.3 6757 325646.97 IV 7 5.13

RC105.25 4 411.3 3 0.22 KD 1 0.32 0.00

RC105.50 8 855.3 16 2.87 KD 3 6.82 0.00

RC105.100 15 1513.7 37 19.46 KD 9 69.26 0.00

RC106.25 3 345.5 15 0.54 KD 1 0.43 0.00

RC106.50 6 855.3 21 3.78 KD 7 11.72 0.00

RC106.100 13 1401.2 14451 107194.07 0.00

RC107.25 3 298.3 1 0.05 KD 1 0.27 0.00

RC107.50 6 723.2 71 17.58 KD 11 47.45 0.00

RC107.100 12 1207.8 1493 14114.33 IV 1319 0.01

RC108.25 3 294.5 1 0.30 KD 1 0.80 0.00

RC108.50 6 598.1 8 9.08 CR 3 829.24 0.00

RC108.100 11 1114.2 707 23516.79 IV 17 2.74

Table 8.7: Computational results - VRPTW class RC1
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Instance Solution Relaxed Pricing Exact Pricing

K IP Nodes T (s) Nodes T (s) G(%)

R201.25 4 463.3 3 0.30 KL 3 1.13 0.00

R201.50 6 791.9 1 1.2 KL 1 16.25 0.00

R201.100 8 1143.2 183 380.10 KL 23 837.31 0.00

R202.25 4 410.5 5 1.2 KL 1 1.32 0.00

R202.50 5 698.5 11 17.1 KL 7 19.55 0.00

R203.25 3 391.4 37 8.1 KL 1 2.24 0.00

R203.50 5 605.3 19 71.64 IV 75 1602.00 0.00

R204.25 2 355.0 35 40.62 IV 19 48.74 0.00

R204.50 2 506.4 132 7837.34 IV 23 0.51

R205.25 3 393.0 15 1.65 KL 5 4.32 0.00

R205.50 4 690.1 133 193.28 IV 123 519.72 0.00

R206.25 3 374.4 85 21.3 KL 5 3.74 0.00

R206.50 4 632.4 1615 7410.25 IV 59 4068.00 0.00

R207.25 3 361.6 125 45.3 KL 9 15.64 0.00

R207.50 4 (584.6) 13 3.63

R208.25 1 328.2 13 106.12 IV 1 121.50 0.00

R209.25 2 370.7 75 87.3 KL 9 12.70 0.00

R209.50 4 600.6 6 47.0 IV 5 733.55 0.00

R210.25 3 404.6 65 9.75 KL 1 4.52 0.00

R210.50 4 645.6 525 795.6 KL 99 2.14

R211.25 2 350.9 1513 772.95 KL 73 5188.00 0.00

R211.50 3 535.5 1972 7036.6 IV 5 19.51

Table 8.8: Computational results - VRPTW class R2
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Instance Solution Relaxed Pricing Exact Pricing

K IP Nodes T (s) Nodes T (s) G(%)

RC201.25 3 360.2 1 0.30 KL 1 0.40 0.00

RC201.50 5 684.8 15 4.50 KL 1 10.03 0.00

RC201.100 9 1261.8 679 1808.85 KL 65 3518.9 0.00

RC202.25 3 338.0 665 333.45 KL 1 1.70 0.00

RC202.50 5 613.6 29 79.73 IV 1 6.67 0.00

RC202.100 8 1092.3 239 40925.94 IV 33 5983.63 0.00

RC203.25 3 326.9 379 619.38 IV 1 2.59 0.00

RC203.50 4 555.3 38 17895.64 IV 1 856.56 0.00

RC204.25 3 299.7 1 2.48∗ 0.00

RC205.25 3 338.0 23 10.35 KL 1 0.64 0.00

RC205.50 5 630.2 5 17.36 IV 1 5.03 0.00

RC205.100 7 1154.0 65 4387.65 IV 73 2770.48 0.00

RC206.25 3 324.0 503 293.25 KL 1 1.61 0.00

RC206.50 5 610.0 62 154.80 IV 1 50.80 0.00

RC207.25 3 298.3 1 3.39∗ 0.00

RC207.50 4 558.6 1 223.67∗ 0.00

RC208.25 2 269.1 1 123.65∗ 0.00

RC208.50 3 476.7 21 26412.50 0.00

Table 8.9: Computational results - VRPTW class RC2
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k ≤ 6 have been used (see Cook and Rich [90]). Best lower bounds have been

reported by Kallehauge et al. [5] for intstances rc104.100 and r 108.100 It can

be seen that the use of elementary paths and 2-cuts allows to solve to optimality

eleven instances at the root node of the search tree. 100 customers instances rc104,

rc107 and rc108 have been solved by Irnich and Villeneuve [83] but the authors did

not report the lower bounds at the root node for those instances. Instead I could

solve rc106 (removing the time limitation) in 107194.07 seconds for the first time.

Table 8.3 reports only instances for which the relaxed pricing algorithm fails to

compute the optimal solution at the root node of the search tree, other instances

are not reported since the comparison is not significant. The table shows that the

use of elementary paths allows to solve all instances at the root node of the search

tree except instance c204.100 that was not solved within the time limit.

Tables 8.4 and 8.5 show that the lower bound improvement is greater for in-

stances of set 2. It varies from 0% to 17.57% for r-instances and from 1% to 65.09%

for rc-instances. 5 r-instances and 14 rc-instances have been solved at the root node.

For unreported instances no valid lower bounds can be computed within the time

limit by the exact pricing algorithm and in some cases, by both exact pricing and

relaxed pricing algorithms. Thus the comparison cannot be performed.

8.2.2 Search tree and time comparison

For the experimental comparison of the overall Branch-and-Price algorithms I re-

port the search tree size and the overall computing time multiplied by a factor 0.07

for Kohl et al. [69], by 0.16 for Cook and Rich [90], by 0.33 for Irnich and Villeneuve

[83] and the duality gap at the end of the computation for the exact pricing. The

multiplication factors have been obtained comparing different computers perfor-

mance using the Linpack benchmark, available at http://performance.netlib.org.

Since the comparison between the Sun Fire 15K system and a standard Pentium

IV is not available the computing times of the results presented by Kallehauge

et al. [5] are roughly multiplied by 1.5 that is a lower bound on the ratio of the

performances of the Sun Fire 15K against those of a Pentium IV. The ratio 1.5 has

been obtained comparing the MFLOPS of a UltraSPARC III (the core of the Sun

Fire 15K system) and the MFLOPS of a Pentium IV. It is clear that the overall

performaces of a system not only depend on the processor speed.

Tables from 8.6 to 8.9 show that the search tree was always smaller when

elementary paths were used except for instances r110.50, rc101.100 and r203.50 for

which Kohl et al. [69] and Irnich and Villeneuve [83] were able to perform very

effective branching decisions.

Tables 8.6 and 8.7 show that for set 1 instances the algorithm based on elemen-
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tary paths is not competitive with the algorithms based on relaxed pricing except

for a few cases. Instance R106.100 has been solved in a less than a quarter of time

used by Cook and Rich [90]. Instance R107.100 were solved in 8120.34 seconds, in-

stance R109.100 were solved in 7635.13 seconds and instance R110.100 in 17574.84

seconds by removing the time limit. The value 973.6 for instance R112.100 is the

new best known obtained with the exact pricing algorithm. The exact pricing

provided a new optimal solution for instance RC106.100.

Table 8.8 does not show any clear domination between the two algorithms. The

algorithm based on exact pricing outperforms the one based on relaxed pricing

when the lower bound improvement shown in previous tables is significant. By

contrast some instances that seem to be quite easy for the relaxed pricing algorithm

were not solved by the exact pricing one.

Table 8.9 reports on computational results that are favourable to exact pricing.

Five new instances have been solved by exact pricing. Instances marked with an

asterisk have been solved also by Chabrier [1] who proposed an algorithm based

on the computation of elementary paths similar to the one proposed in this thesis.

Instance rc208.50 has been solved for the first time. It should be noticed that

several instances have been solved at the root node of the search tree.

Conclusions The computational experience shows that column generation cou-

pled with the exact solution of the pricing problem allows to compute better lower

bounds and reduce the size of the search tree. The overall performances of algo-

rithms based on relaxed or exact pricing are comparable. It can be noticed (and it

is well known in literature, see Cordeau et al. [44]) that branching decisions do not

help to increase significantly the lower bounds (see the search tree size comparison)

and then it can be stated that the most part of the computation should be used to

increase as much as possible the lower bound in the early nodes of the search tree

by the use of elementary paths and valid cuts. Future research should be devoted

in this direction following the approach of Fukasawa et al. [79] for the CVRP.
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Conclusions

In this thesis I have presented an algorithmic approach based on the Branch-

and-Price framework for the solution of vehicle routing problems with additional

constraints. Such approach has been applied to the capacitated VRP and to two

of its variations: the VRP with Delivery and Collection and the VRP with Time

Windows.

The Branch-and-Price algorithm presented is based on the linear relaxation of

a Set Covering reformulation of the VRP, solved via column generation, where the

pricing problem is the Resource Constrained Elementary Shortest Path Problem.

The most successful approaches for the RCESPP are based on dynamic program-

ming. In this thesis I have proposed some new algorithmic ideas to improve the

dynamic programming algorithms for the solution of the pricing problem: in par-

ticular I have presented exact algorithms for the RCESPP based on bi-directional

and bounded dynamic programming. I have also proposed a new dynamic pro-

gramming algorithm for the solution of the RCESPP, called Decremental State

Space Relaxation, which is a development of the state space relaxation concept

proposed by Christofides et al. [67].

After presenting these algorithms I investigated the advantages and drawbacks

of two possible approaches: to solve the pricing problem to optimality or to solve

a relaxation, namely the RCSPP, where cycles are allowed.

I performed an exhaustive computational experience on both methods for the

pricing problem and on the resulting branch-and-price algorithms for the solution

of the CVRP, the VRPDC and the CVPTW with and without the use of cutting

planes to strengthen the formulation .

Several authors used both the relaxed pricing approach (see for instance Irnich

and Villeneuve [83]) and the exact pricing approach (see for instance Chabrier

[1]) but, at the best of my knowledge, this is the first attempt to compare the

two approaches in terms of lower bounds and overall performances on a variety of
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VRP problems. The algorithmic ideas presented in this work are useful to improve

dynamic programming algorithms for both the RCESPP and the RCSPP. It can be

seen in chapter 4 that the bidirectional bounded algorithm outperforms the mono-

directional one. The average computing time reduction is about the 30% but in

some cases the computing time has been reduced by one order of magnitude.

The main conclusion that arises from this research is that better results can be

obtained through the improvement of the lower bounds in the former levels of the

search tree.

I focused my attention on the lower bound increase obtained by the generation

of columns corresponding to elementary paths. Other approaches in the literature

are based on the computation of cutting planes (see Fukasawa et al. [79]). The

reported experiments show that both approaches are useful. Experiments on the

VRPDC (see chapter 7) and on the CVRTW (see chapter 8) showed that the use of

elementary paths gives better results while experiments on the CVRP (see chapter

6) showed the exact pricing algorithm is useful to increase the lower bounds but the

use of cutting planes is faster. The main reason for that behaviour is that for more

constrained problems (like VRPDC and CVPTW) the branching decisions allow

to obtain children problems that are easier than the parent problem and then the

computation of elementary paths is easier. Thus, since the lower bound increase

given by the exact pricing is significant, the overall branch-and-price is faster. On

the contrary for less constrained problems, like the CVRP, the former nodes of the

search tree are more difficult for the exact pricing algorithm and thus the overall

branch-and-price is slower.

This also indicates new directions for future research. It has been shown that

the computation of elementary paths is useful but time consuming. A new com-

promise between relaxed pricing and exact pricing should be explored, not only

in the direction of forbidding cycles of order k as typically done in the literature

but also avoiding the cycling over a subset of critical nodes. It should be pointed

out that the decremental space relaxation algorithm presented in chapter 4 can be

used in this direction. The balance between the speed of the algorithm versus the

accuracy can be tuned stopping the decrement of the state space relaxation to a

fixed number of critical nodes. The lower is the number of critical nodes the faster

and less accurate is the algorithm.
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