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Chapter 1

Introduction

1.1 Global picture of the system

The mission of an Earth Observing Satellite (EOS) is to acquire images of specific
areas of the Earth surface, in response to customers’ observation requests.

EOS are platforms equipped with instruments for optical, radar or infra-red
observation, placed in low orbits around the Earth. The satellite orbit is circular:
this induces a constant altitude. To achieve repetitive observations under compa-
rable light conditions, whichever area is observed and whatever the observation
day is, the satellite orbit is heliosynchronous (constant angle throughout the year
between the orbital plan of the satellite and the Earth-Sun axis; figure 1.1). This
is useful for observation with optical instruments. A heliosynchronous orbit is
nearly a polar orbit: the orbital plan passes almost through the North and South
poles of the Earth. The fact that the orbit is heliosynchronous, together with the
rotational movement of the Earth from West to East around the polar axis, allows
a potential covering of the whole Earth surface (figure 1.2). Finally, the orbit
is phased: after a cycle of a fixed number of revolutions the satellite goes back
exactly to its previous positions with respect to the Earth.

In the general scenario, as considered in this work, a constellation of EOS is
available. Thus, the scientific activities of satellites have to be coordinated in order
to fully exploit the capacities of the system.

From the viewpoint of the scientific activities, satellites are operated by an
Image Programming and Processing Center. This center receives observation re-
quests from customers (scientists and users) and distributors and builds the daily
imaging workload of each satellite. Then it receives back the data associated with
acquired images, processes and evaluates them. Finally it sends the results back

1This figure is taken from (Verfaillie et al., 2002b).
3This figure is taken from (Verfaillie et al., 2002b).
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1.1. GLOBAL PICTURE OF THE SYSTEM 2

Figure 1.1: the movement of the orbital plan month after month 1.

Figure 1.2: the daily track of a satellite on the Earth surface. The labelled points
represent cities where ground stations are located; they appear together with the
corresponding visibility window available for ground station-satellite connections3.
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to the customers.
In the remainder we will only consider the management of scientific activities

of EOS satellites, disregarding all the other aspects concerning the global mana-
gement of the overall system, such as flight dynamics.

1.2 Basic problem: informal description

A customer request generally involves several contiguous images (this will be ex-
plained below in more details). Due to the large number of requests concerning
some zones, in general all of these requests cannot be satisfied on a given planning
horizon. Accordingly, the overall problem consists of selecting a feasible sequence
of images that will be acquired by the satellite constellation over the planning
horizon, with the objective of providing maximum satisfaction of the customer
requests.

The set of customers’ observation requests (the input data of the planning prob-
lem) evolves almost continuously: it includes new incoming requests and eliminates
those which have been satisfied or which are out of date. Each request is associated
with the following data:

• a geometrical description of the area to be imaged on the Earth surface;

• a set of angular constraints concerning the satellite setup during the acqui-
sition;

• a validity period which defines the utility of the request (usually given in
days).

The Earth surface associated with a request can be an area of limited dimen-
sions, or a polygon which may cover a wide geographical area. Because of their
size, polygons cannot usually be acquired in a single shot and are therefore parti-
tioned into contiguous strips (or “swaths”) of rectangular shape (i.e. a request is
splitted into a set of images). The width of a strip depends on the design of the
instrument. The length of a strip may vary up to a given limit depending on the
hardware characteristics of the satellite (figure 1.3). For our purpose an area of
limited dimensions can be seen as a polygon comprising a single strip.

For each satellite-image pair we can compute a set of available time windows
in which the satellite can start the acquisition by using the satellite’s orbital pa-
rameters together with the angular constraints and the validity period associated
with the image. To this purpose we can distinguish at least two cases according
to satellite features. If the satellite is able to observe the desired Earth surface

5This figure is taken from (Lemâıtre et al., 2002).
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Figure 1.3: the cutting up of a polygonal area into contiguous parallel strips of
constant width5.
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before or after being exactly at its zenith (figure 1.4), time windows are continuous
intervals of possible starting times; otherwise each time window reduces to a single
starting time.

The time needed to observe or acquire a strip is proportional to its length. On
the other hand, the setup change requires that a minimum transition time elapses
between two consecutive acquisitions.

Since tipically the number of requests exceeds what can feasibly be accomo-
dated during a mission, the problem consists in selecting the subset of images to
be taken by satellites during the planning horizon in order to satisfy a maximal
part of the set, provided that:

• each satellite takes at most one image at a time;

• each satellite starts the acquisition of an image in one of the time windows
associated with the satellite-image pair;

• sufficient transition time elapses between two consecutive acquisitions per-
formed by a satellite.

The difficulty of this planning problem increases taking into account additional
constraints, but it also depends on satellite capacities. For example, the SPOT
satellites, a current generation of optical EOS, are characterized only by one de-
gree of freedom, thanks to a mirror that can be moved on the roll axis, placed
in front of each observation instrument. This mirror can be moved only during
transitions between images, but it is fixed during an image acquisition. Therefore
all images are acquired with the same azimuth (the one parallel to the satellite
track) thanks to the movement of the satellite on its track. Moreover the starting
time of any candidate image is fixed (it is the exact time at which the satellite
flies over the beginning of the area to be acquired). As a consequence the order of
image acquisitions cannot change, and compatibilities among acquisitions can be
pre-computed. On the other hand, the new generation of EOS, like those studied
in the French PLEIADES project, are Agile Earth Observing Satellites (AEOS).
They have the advantage to be more maneuverable: the unique on-board optical
observing instrument is fixed on the satellite but the whole satellite can move on
the three axes (roll, pitch and yaw). In this way, maneuverability for image acqui-
sitions as well as for transitions between consecutive acquisitions is allowed. New
agility capabilities let azimuth and the starting time of an image acquisition be
now free, within given limits (figure 1.4 and figure 1.5). Thus the satellite can
image a given area on the Earth surface in a potentially infinite number of ways.
This leads to a potential better efficiency of the whole system exploitation, while
increasing the problem difficulty.

6This figure is taken from (Lemâıtre et al., 2002).
7This figure is taken from (Lemâıtre et al., 2002).
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Figure 1.4: an image acquistion performed by an AEOS 6.

Figure 1.5: a possible sequence of image acquistions for an AEOS 7.
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In a similar way, also a greater number of satellites and a longer planning
horizon may increase the number of opportunities to observe a specific area, and
this may result again into an increase of the problem difficulty.

1.3 Basic problem extensions

As already mentioned, the goal of Earth Observation Satellites missions consists
in maximizing the requested images allocation on the payload. The mathematical
formalization of the physical problem considers the sum of the acquired images as
the objective function of the problem to be solved; a different approach consists in
labelling each image to be acquired with a non-negative weight. The criterion to
maximize becomes the sum of the weights of the acquired images (standard utility
criterion). It must be noticed that if images are associated with weights, a further
constraint must be considered to acquire each image at most once.

The introduction of non-negative weights helps us to evaluate requests partially
covered by satisfactory images. A simple policy is to choose a reward proportional
to the acquired surface for each request. The corresponding criterion is named the
linear quality criterion. The drawback of this policy is the fact that many requests
can be covered only partially. The Programming Center would like to favour
the ending of acquisition of the almost acquired requests, before beginning new
ones. This preference constraint can be taken into account by a modified quality
criterion: to maximize the sum of partial rewards obtained on each request. The
partial reward obtained on a request is a convex function of the acquired surface,
instead of a linear one. This criterion is named the non-linear quality criterion.

Moreover weights are useful to correct the negative effects of a short term
planning horizon, as well as the effects of meteorological uncertainties (in case of
satellites equipped with optical instruments). Images with the smallest number of
remaining feasible opportunities and the highest realization likehood (good mete-
orological forecast for the next planning horizon) can be favoured by modifying
their original weight.

As far as constraints are concerned, those considered in more realistic version
of the problem are the following:

• a request can be mono or stereo: a mono request consists of a single shot (ac-
quisition) of each strip in the polygon; a stereo request consists of two shots
for each strip at different angles (and thus within different time windows);
a strip from a stereo request is considered to have been acquired only if its
twin strip has also been acquired (stereoscopic constraints); depending on
the satellite characteristics, the two twin strips have to be acquired either by
the same satellite during the same over-flight or by two different satellites;
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• multiple images associated with the same request must be acquired by sat-
isfying specific criteria depending on the features of the considered satellites
(in the following chapters, these constraints will be explained in details for
two specific problems);

• there can be a subset of high priority requests that are known to be all
satisfiable and must be satisfied;

• acquired images are stored on board until they can be downloaded towards a
ground station: the recording capacity on board cannot be exceeded (mem-
ory constraints);

• the connection between a satellite and a ground station (for downloads) can
take place only within specific time windows;

• in every periodical time window of a given width, the overall energy con-
sumed by a satellite cannot exceed a certain threshold (energy constraints);

• if some satellites are equipped with several cameras on board, there can be
some specific constraints which link their usage.

It must be noticed that whenever specific constraints manage the acquisition
of multiple images associated with the same request, the usage of the non-linear
quality criterion to evaluate the goodness of the solution can be substituted for
the linear one.

1.4 Literature overview

One of the first work related to Earth Observation Satellites has been carried out
by Hall and Magazine (1994). In their work they present a problem, named
the Space Mission problem (SM), consisting in selecting and scheduling a set of
jobs on a single machine, among a set of candidate jobs. Each candidate job is
associated with a fixed duration, a given time window and a weight. The aim is to
select a feasible sequence of jobs maximizing the sum of weights. The SM is NP-
hard in the strong sense, since it is a generalization of the problem ‘Sequencing
with release times and deadlines’ (Garey and Johnson, 1979). The authors
develope some heuristic methods and two upper bounding procedures, based upon
a preemptive relaxation of the problem (a job can be fragmented), and upon
the use of Lagrangean relaxation. The heuristics and bounding procedures have
been incorporated into a dynamic programming algorithm tested on 30 randomly
generated instances with up to 200 candidates; instances with about one hundred
jobs have been solved to optimality.
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Some authors have studied the management of SPOT5 satellites requiring a
fixed starting time for any candidate image due to technical reasons. As a result,
even if each satellite is equipped with 3 cameras, scheduling constraints can be
interpreted as mutual exclusions. Each image is associated with a weight and
there is a subset of stereoscopic images. The problem is to find a feasible subset of
image satisfying the standard utility criterion. This optimization problem is NP-
hard, and can be formulated in the general Valued Constraint Satisfaction Problem
model (Schiex et al., 1995). Bensana et al. (1999) have introduced large scale
benchmark instances for the uncapacitated and capacitated versions of the problem
involving one satellite performing one or several orbits (the term “capacity” refers
here to the total information that can be recorded in the satellite). Bensana et al.
(1996) and Verfaillie et al. (1996) describe dedicated exact and approximate
methods to solve benchmark instances, but they find optimal solutions only for
few of them. The column generation technique has been used in (Gabrel and
Murat , 2003) to compute upper bound on the benchmark instances. Vasquez
and Hao (2001, 2003) presented a tabu search algorithm together with a “logic-
constrained” knapsack formulation: the authors obtained the best solutions and
good upper bounds for almost all benchmark instances.

Gabrel et al. (1997) presented a work concerning a problem of selection and
scheduling for a kind of semi-agile satellite: the satellite is weakly mobile on two
axes (pitch and roll), but remains fixed during an image acquisition; so there is
only one possible azimuth for an acquisition (parallel to the satellite motion). The
maximization criterion is the number of selected images (images are not weighted).
In (Gabrel et al., 1997) two related problems have been stated. In the first one,
named the Maximum Shot Sequencing Problem (MSP), multiple orbits are con-
sidered, so several possible disjoint time windows (continuous intervals) are given
for each image. In the second problem, named the Maximum Shot Orbit Sequenc-
ing Problem (MSOP), only one orbit is processed, thus a single time window is
associated with each candidate image. MSOP and MSP are NP-hard, actually the
Shortest Path Problem with Time Windows (SPPTW) arises as a subproblem in
both of them. The authors propose exact and approximate algorithms for both
the discretized and the continuous time model. They have done simulations and
tests on a set of randomly generated instances, assessing the proposed algorithms
against upper bounds, and measuring the impact of the discretization. The results
show the good quality of the proposed approximate algorithms.

As far as AEOS are concerned, one of the most studied problems is inspired
by the PLEIADES constellation of optical satellites which is being planned by the
Centre National d’Études Spatiales (CNES) in France, and due to be launched in
2008. The first version of the problem gave rise to the 2003 ROADEF Challenge
(Verfaillie et al., 2002a,b) in which teams were required to develop algorithms
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for the management of a single satellite over a single orbit. In this version of
the problem (and in the subsequents to our knowledge), the cutting up of areas
in strips is pre-computed, using a single direction (azimuth) for all requests of
the same track (where the track is defined to be the enlightened half-revolution
of the satellite). A constant direction is chosen, as to vary the azimuth between
two images is very expensive in terms of transition times. Therefore optimizing
the cutting up of each polygon separately (in order to obtain for example the less
possible number of strips for each of them) is likely to increase the duration of tran-
sition maneuvers and, as a consequence, to decrease the available productive time
for proper imaging. An important restriction to the satellite capabilities seems to
be a single and constant direction for the cutting up of areas in strips, because in
this way its agility is not completely exploited. Actually, the satellite agility is still
used (thus making a difference with non-agile satellites): the cutting up direction
is maintained constant for a given track, but it can be freely chosen and can change
between two consecutive tracks (or even between two groups of images of the same
track separated by a large gap); once the direction is fixed, two opposite azimuths
can still be used for imaging (forward view and backward view). As an important
side effect, if the cutting up direction is constant, a better approximation of the
minimum transition times between each pair of candidate images of the processed
track is possible. Actually, due to the difficulty of the real computation, transition
times are usually approximately calculated, and if a produced schedule does not
pass the final check, they are majored and the schedule is computed again.
In conclusion, in this problem the satellite can acquire a strip with two possible
azimuths, and for each view it can start the acquisition within the related con-
tinuous time window. Some requests are mono while others are stereo (therefore
stereoscopic constraints have to be respected), requests are weighted and the non-
linear quality criterion has to be maximized. Kuipers (2003), Cordeau and
Laporte (2005) presented two different local search algorithms for this version of
the problem; they obtained the best solutions for the benchmark instances. For
these algorithms they have won respectively the first and the second prize of the
challenge.
Lemâıtre et al. (2002) deal with a version of the problem concerning one satel-
lite performing multiple orbits (tracks) over a scheduling horizon of 1 day. The
authors have given the problem the name of AEOS Track selection and Scheduling
Problem, because they simplified the problem by optimizing one track at a time.
This simplification leads to sub-optimal solutions. Actually most of the images
have several other opportunities to be taken after those in the current track. To
mitigate this negative effect, the authors suggest to work on the weight associ-
ated with the images. In particular they refer to the work of Verfaillie et al.
(1999), where for each image the original weight, the remaining opportunities and



1.4. LITERATURE OVERVIEW 11

the weather forecast are combined into a working weight. To solve the simpli-
fied problem, the authors develope four methods: a greedy algorithm, a dynamic
programming algorithm, a method based on the existing constraints programming
framework and a local search algorithm. This latter is based on neighbourhoods
defined considering the possibility to insert or remove images into or from a se-
quence of image acquistions. They compare the performaces of the methods on
six representative instances involving up to 375 requests, giving evidence of the
advantages and drawbacks of each method. In particular only the last two cited
methods have been able to solve all the instances satisfying all the operational
constraints.

Harrison et al. (1999) presented a scheduling problem involving a satellite
equipped with a radar instrument. This satellite has the advantage to be very
agile on the pitch axis thanks to an electronic scan but the disadvantage to be
slow on the roll axis. Since only one azimuth is available for acquiring images,
this problem is equivalent to the SM problem (Hall and Magazine, 1994) with
transition times. The authors describe a partial enumeration algorithm and give
preliminarly results for randomly generated instances, concerning the schedule of a
single satellite with up to 50 requests, in a time window of a few minutes. A richer
model is considered by Frank et al. (2001), who develope a greedy stochastic
algorithm, without reporting about computational results obtained.

In the context of the NASA’s Earth observing System domain, the work
reported in (Wolfe and Sorensen, 2000) is about the so-called Window-
Constrained Packing problem (WPC). Unlike the above cited problems, in this
one the observations have a minimum and a maximum duration, and preference is
given to higher priority observations, with longer durations, and best placed inside
their time-window. There are no transition times among acquisitions. This prob-
lem is similar to the SM problem (Hall and Magazine, 1994), with a particular
quality function, depending on the starting times of observations. The authors pre-
sented two simple construction heuristics as well as a genetic algorithm to schedule
acquisition on a single satellite, and reported computational results on randomly
generated instances involving up to 50 requests.

Other studies on similar problems have also been performed, among others,
by Bataille et al. (1999), Morris et al. (1997) and Globus et al. (2003). In
particular in (Lemâıtre et al., 1999) a new problem concerning the exploitation
of a satellite by several entities is taken into account. The aim is both to give
maximal satisfaction to each entity and to enforce a kind of fairness constraint on
selections.
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1.5 Outline

This thesis is focused on the application of Operations Research (OR) tecniques
to problems arising for AEOS. In the OR literature related to the management
of scientific activities for AEOS, most of the works consider a single satellite per-
forming one or more orbits. The aim of this thesis is to provide insights to build
computational instruments applicable in more realistic scenari.

The next chapter deals with a new version of the problem concerning the
management of PLEIADES constellation of optical satellites. The version under
study is more realistic with respect to those considered in the ROADEF challenge
and by Lemâıtre et al. (2002); it differs from the previous ones in what follows:

• we will consider two satellites performing multiple orbits over a given plan-
ning horizon of 1 day;

• there is a subset of high priority requests;

• specific constraints are imposed on the acquisitions of multiple images derived
from the same requests;

• the objective function is linear with respect to the proportion of the polygon
area being acquired (instead of being piecewise-linear convex);

• only one azimuth is available for imaging (the forward one).

Since a given request can sometimes be satisfied by several satellites in more than
one of their orbits, the problem is not separable by satellite or by orbit. Instead,
planning must be performed simultaneously for all satellites and orbits considered.

For a similar problem version, Bianchessi et. al (2005) defined a tabu search
heuristic that can be applied also to our problem. Then we will introduce an upper
bounding procedure based on column generation with the aim to find tight dual
bounds. We will report results about extensive computations done on instances
provided by the CNES that show that the approach adopted is successful.

In the subsequent two chapters we will consider the problem arising as part of
the Italian COSMO-SkyMed project. The COSMO-SkyMed constellation is made
of four satellites equipped with SAR (Synthetic Aperture Radar) instruments. The
optimization problem concerns the management of these last four satellites per-
forming multiple orbits in a planning horizon of 1, 4 or 16 days. Owing to the SAR
technology, there is no difference between day and night observations and the full
orbit (not a track) is available for acquisitions. As previously said, for this kind
of satellites, only one azimuth is available for acquiring images. In particular each
time window associated with a swath reduces to a single starting time, and it is
called Data Take Opportunity. Requests are weighted and some of them can have
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high priority. Moreover, memory and energy constraints as well as transmission
features are considered. The default objective is to maximize the linear quality
criterion, but we will consider also the one calling for the minimization of the time
necessary to satisfy high priority requests. In the third chapter we will present
greedy constructive (randomized) algorithms to solve the problem in its real ver-
sion. Whereas in the fourth one we will describe a solution methodology that
allows us to compute dual bounds and quasi-feasible solutions that can guide the
greedy algorithms in finding better feasible solutions than those computed from
scratch.

Finally, based on the results obtained, some considerations will be drawn about
the applicability of the presented tecniques.



Chapter 2

The Multi-Orbit Optical
Constellation Problem

This chapter is concerned with the management of the scientific activities for
the PLEIADES constellation of optical satellites performing multiple orbits over a
given planning horizon. We call this problem the Multi-Orbit Optical Constellation
Problem (MOOCP). The chapter describes an upper bounding procedure based on
column generation that can be used to evaluate the quality of heuristic solutions. In
the first section we formally defines the problem introducing some notation. Then
in section 2.2 we discuss a variant of the MOOCP arising when it is necessary to
share the satellite resources among different users. Section 2.3 illustrates a column
generation approach that can be used either to maximize the MOOCP’s objective
or, as far as sharing is concerned, to maximize the objective associated with a
given user. In section 2.4 we shortly describe a heuristic presented by Bianchessi
et. al (2005) for the MOOCP with Satellites Sharing and in section 2.5 we use
the results produced by this heuristic to assess the strength of our formulations.
Finally section 2.6 reports some conclusions.

2.1 Problem description

The MOOCP is an extension of the generic problem presented in section 1.2. In
particular here the time windows are continuous intervals of possible starting times
(the reference scenario is described in (Verfaillie et al., 2002a)). In the MOOCP
we do not consider memory and energy constraints, the additional features taken
into account are the following ones. Multiple strips associated with the same poly-
gon must be acquired consecutively, both in space and time. Consecutiveness in
space means that if multiple strips from the same polygon are acquired, then these
must be contiguous. Consecutiveness in time means that between the acquisitions

14
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of two strips from a given polygon, the satellite cannot acquire a strip belonging to
another polygon. Some requests are mono while others are stereo, moreover some
of them can be high priority. Here we assume that the profit associated with a
partially acquired polygon is the fraction of the polygon’s surface being acquired,
multiplied by the profit associated with the full acquisition of the polygon. The
objective is to maximize the linear-quality criterion.

Let R be the set of requests formulated by users and let T be the set of all orbits
performed by the satellites within the temporal horizon. To each orbit t ∈ T is
associated a set Rt ⊆ R of requests that can be totally or partially satisfied during
the orbit. Of course, the sets Rt are not mutually exclusive. A subset R ⊆ R
of high priority requests is also introduced to denote requests that must be fully
satisfied in the solution. Let N be the set of all strips, N t the set of strips associated
with requests in Rt and N , the set of strips originating from priority requests. An
acquisition duration di, a profit pi, and a time window [ai, bi] are associated with
each strip i ∈ N t. The time window of a strip corresponds to the interval during
which the strip lies within the field of view of the satellite for the particular orbit
considered. Finally, for each pair of strips i, j ∈ N t, let cij be the transition time
between the end of strip i and the beginning of strip j. This transition time results
from the need to move the satellite at the appropriate angle to acquire strip j after
strip i. As time windows are moderately large, there often exist several feasible
orderings with different total transition times for a given subset of strips (a subset
associated either with the same request or with different requests).

2.2 The MOOCP with Satellites Sharing

To share the satellite resources among different users, the PLEIADES system will
use a three-phase allocation process. In phase A, priority requests will be selected
through an external procedure, while in phase B, requests from a subset of users
will be selected by an optimization algorithm. In this phase, a limit will be imposed
on the total utilization of satellites by each user. This limit is expressed in terms
of the total acquisition time (i.e., the sum of the acquisition times of the selected
strips). Finally, phase C will allocate the remaining capacity of the satellites
between all users. In this phase, no particular constraints will be imposed. In
both phases B and C, priority requests must be satisfied in all solutions and will
therefore be taken into account in the evaluation of the maximal utility.

This additional feature is modelled considering a new objective: the maximiza-
tion of the weighted sum of the normalized utilities associated with the different
users of the system. The utility of a user is defined as the sum of the profits
associated with the (possibly partially) satisfied requests of that user. This utility
is normalized by dividing it by the maximal utility that could be achieved for this



2.3. UPPER BOUNDING PROCEDURE 16

user if he were the only one to use the system (the time limit imposed on the total
utilization of the satellites by each user must be considered also in the compu-
tation of maximal utility, as well as the additional profit due to the presence of
priority requests). The latter value cannot be known exactly unless the MOOCP
is solved to optimality for this user, but it can nevertheless be either approximated
by means of a heuristic or bounded by solving a relaxation. Let ui(s) be the utility
of user i in solution s and let u∗

i be the maximal utility of user i. The normalized
utility is then defined as u′

i(s) = ui(s)/u
∗
i . A solution s can thus be characterized

by the utility vector u′(s) = (u′
1(s), u

′
2(s), . . . , u

′
m(s)), where m denotes the number

of users in the system. The value of this solution is then given by

v(s) =
m∑

i=1

wiũi(s), (2.1)

where ũ(s) = (ũ1(s), ũ2(s), . . . , ũm(s)) is the vector of utilities sorted in increasing
order, and the weights wi are given by

wi =
αi−1

m−1∑
j=0

αj

,

with 0 < α ≤ 1.
Because of the way in which the vector of utilities is sorted, this objective

function always assigns a higher weight to the users with the smallest utility. This
approach is used to ensure the fairness of the solution.

2.3 Upper bounding procedure

We are now presenting a column generation approach that can be used either to
maximize the MOOCP’s objective or, as far as sharing is concerned, to maximize
the utility of a single user (i.e. to determine the value of u∗

i in phase B and phace
C problems).

2.3.1 Column generation

Column generation is one of the most successful approaches in large scale opti-
mization. It consists in solving huge linear programs by considering at once only
a small subset of the variables. Let us consider the linear program P , also called
the master problem, and its dual D, where A is an m × n matrix, c,x ∈ Rn and
b, π ∈ Rm:
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v(P) = min cTx v(D) = max bT π

Ax = b AT π ≤ c

x ≥ 0

At any iteration i of the column generation solution process, only a subset Ai

of the columns of A is handled. By solving a restricted master problem, we obtain
a primal feasible solution xi along with a vector πi of dual multipliers. With these
multipliers, we compute the minimum reduced cost over all columns of matrix A
to generate some negative reduced cost columns, if any, that are added to the
restricted master problem. If no such column exists, (xi, πi) is a pair of primal
and dual optimal solutions for P and D, respectively. Computing the minimum
reduced cost should be performed in such a way that it is much less costly than
evaluating the reduced cost of all columns explicitly. This is the case when the
minimum reduced cost is given by the solution of a well structured problem, usually
called the oracle or subproblem. When columns of A are given as elements of a set
A, and the respective cost coefficients can be computed via a function c : A → Q,
then the subproblem can be defined as min{c(a)− πT

i a | a ∈ A}.

2.3.2 Problem formulation

In order to apply the column generation approach, we have decomposed the
MOOCP into a set-partitioning master problem and a set of Elementary Shortest
Path Problem with Time Windows (ESPPTW) as subproblems. An ESPPTW is
defined for each orbit. The formulation adopted is inspired from the unified frame-
work for vehicle routing and scheduling problems described by Desaulniers et al.
(1998). According to this framework, a strip and an orbit can be seen, respectively,
as a task and a commodity.

For each orbit t, we define a directed graph Gt = (V t, At), where V t and At

denote the sets of nodes and arcs, respectively. In the set V t = N t ∪ {ot, dt}, N t

contains a node for each strip that can be acquired during the orbit and ot and dt

represent the source and sink nodes for orbit t. Each arc (i, j) is characterized by
a profit pij = pi and a positive duration tij = di + cij (with pot = dot = 0).

Several graph reductions are possible. First, all arcs that do not satisfy the
feasibility condition ai + tij ≤ bj can be removed from the graph since this implies
that strip j cannot be acquired after strip i. Because of the way in which two
twin strips i and j must be acquired, there is always a single sequence in which
the acquisitions can be performed: either i must precede j, or j must precede
i. Hence, the following reductions can be performed by considering intermediate
nodes. Consider a couple of nodes i and j (i, j ∈ N t) representing twin strips and a



2.3. UPPER BOUNDING PROCEDURE 18

third node k ∈ N t. If arcs (i, j) and (i, k) are in At but arc (k, j) has been deleted,
then one can also delete arc (i, k) since there cannot be a path in Gt containing all
three nodes. In the same way if arcs (i, j) and (k, j) exist but arc (i, k) has been
deleted, then one can also delete (k, j). Finally if all three arcs (i, j), (i, k) and
(k, j) exist but ai + tik + tkj > bj, then both (i, k) and (k, j) can be deleted.

For each commodity (orbit) t ∈ T , let Ωt be the set of feasible paths from ot to
dt in Gt, and let rt

ω denote the profit of path ω ∈ Ωt. This profit corresponds to
the sum of the profits associated with the individual strips belonging to the path.
Let also θt

ω be a binary variable taking the value 1 if and only if ω ∈ Ωt is selected
for orbit t in the solution. Finally for each path ω ∈ Ωt, each commodity t ∈ T
and each strip i ∈ N , define a binary parameter at

iω equal to 1 if strip i is covered
by path ω.

To handle the twin strip constraints (i.e. stereoscopic constraints) without
adding constraints to the problem for each orbit t ∈ T we introduce an “artifi-
cial orbit” t′ ∈ T ′ characterized by a graph Gt′ = (V t′ , At′). The node set N t′

contains a node for each strip that is not related to a priority request and can be
acquired during orbit t. The arc set At′ contains the arc (ot′ , dt′) and a pair of arcs
(ot′ , i), (i, dt′) for each node i ∈ N t′ . Finally, if i and j are nodes in N t′ representing
twin strips, we delete the arcs (ot′ , j) and (i, dt′) from At′ and introduce the arc
(i, j). As a result, either both i and j will be covered in a path from Ωt′ , or they
will both be covered in a path from Ωt.

The MOOCP can then be formulated as follows:

maximize
∑
t∈T

∑
ω∈Ωt

rt
ωθt

ω (2.2)

subject to
∑
t∈T

∑
ω∈Ωt

at
iωθt

ω = 1 ∀i ∈ N (2.3)∑
t∈T

∑
ω∈Ωt

at
iωθt

ω +
∑
t∈T ′

∑
ω∈Ωt

at
iωθt

ω = 1 ∀i ∈ N \N (2.4)∑
ω∈Ωt

θt
ω = 1 ∀t ∈ T (2.5)

θt
ω ≥ 0 and integer ∀ω ∈ Ωt, ∀t ∈ T ∪ T ′. (2.6)

Constraints (3) and (4) ensure that each strip from a priority request is acquired
and that all strips are acquired at most once. Constraints (5) ensure that a feasible
path is assigned to each orbit.

Let P t be the set of polygons that can be acquired during orbit t. To handle
the polygon constraints, we first change the structure of the graph Gt = (V t, At)
as follows. For each polygon p ∈ P t, the nodes {i1, ..., in} associated with strips
belonging to p are duplicated by creating nodes {i′1, ..., i′n} which are linked to the



2.3. UPPER BOUNDING PROCEDURE 19

Figure 2.1: change in the structure of graph Gt concerning the nodes {i1, i2, i3}
associated with strips belonging to a polygon p ∈ P t; in particular nodes i1 and i3
correspond to non-contiguous strips.

original ones with arcs (i′k, ik) for k = 1, . . . , n. If j is a node associated with a strip
not belonging to the considered polygon, then arcs of the form (j, ik) are replaced
by arcs (j, i′k) for k = 1, . . . , n (i.e., incoming arcs of the nodes {i1, ..., in} become
incoming arcs of the nodes {i′1, ..., i′n}). Furthermore, all arcs that connect nodes of
{i1, . . . , in} corresponding to non-contiguous strips are deleted (figure 2.1). Finally,
let et

pω be an integer parameter representing the number of times that an arc of the
form (j, ik) from polygon p is used in path ω. Polygon constraints can be imposed
through the following inequalities which are added to the master problem:∑

ω∈Ωt

et
pωθt

ω ≤ 1 ∀p ∈ P. (2.7)

The formulation (2.2)-(2.7) is also valid, in case of a single user, for the MOOCP
with Satellites Sharing (phase C problem). Moreover, for a given user, the con-
straints on the total utilization time imposed in phase B problem can be expressed
as follows: ∑

t∈T

∑
ω∈Ωt

dt
ωθt

ω ≤ L, (2.8)

where L denotes the allowed time and dt
ω is the sum of the acquisition times of

the strips acquired in path ω.
The Linear Programming relaxation (LP relaxation) of formulations (2.2)-(2.7)

and (2.2)-(2.8) can be solved by a column generation algorithm in which positive
reduced cost columns are generated by solving an ESPPTW.
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2.3.3 GENCOL

We maximize the LP relaxations of models (2.2)-(2.7) and (2.2)-(2.8) using GEN-
COL. This commercial solver has been developed in 1981 by Jacques Desrosiers
and Franois Soumis while attempting to optimally solve the problem of assigning
buses to school routes with a certain flexibility on the arrival and departure times
of the buses at the schools. Since its conception, GENCOL has evolved continually
through the search of many graduate students and computer analysts. This solver
is specially designed to solve, through column generation, general set-partitioning
problems where each variable in the master problem is associated with a solution of
the (Elementary) Shortest Path Problem with Resource Constraints – (E)SPPRC.
In particular, the objective of the set-partitioning problems solved in GENCOL
consists in finding a minimum cost partition of the tasks.

GENCOL solves the restricted master problem using either the primal or dual
simplex algorithm, whereas each subproblem is solved using the label setting al-
gorithm described in (Desrosier et al., 1995). This algorithm not only finds
the path associated with the minimum reduced cost path variable, but also other
feasible paths associated with negative reduced cost path variables that may be
added to the restricted master problem. Each time the restricted master problem
is solved for a subset of path variables, the dual variables are updated and used
to modify the cost of the arcs in the subproblem graphs. Once a feasible path is
found by a subproblem, a variable is associated with this path in the restricted
master problem and the coefficients of the corresponding column are generated
according to the contributions of the nodes and arcs found along this path. The
iterative process begins by solving a restricted master problem composed of artifi-
cial variables, and ends when no paths of negative reduced cost are generated by
the subproblems.

The set-partitioning constraints impose that each task is covered exactly once
in the solution. Therefore, two paths of the optimal solution will not contain a
same task. This simple observation has led to the implementation of a disjoint
column strategy in GENCOL. This strategy aims at choosing from the feasible path
variables generated by the subproblem algorithm the ones that are associated with
paths covering different tasks and adding them to the restricted master problem
at each iteration. For each subproblem solved at a given iteration, the generated
columns are grouped into disjoint blocks. Each disjoint block is formed of disjoint
columns, i.e., columns associated with paths covering different tasks. Therefore,
a given task is included only once in the set of paths of a disjoint block. When
several subproblems need to be solved, it is possible to temporarily eliminate from
the graphs tasks covered by paths that were generated by previous subproblems
at the current iteration, namely those covered by the paths associated with the
columns of the first disjoint block. In this way, the subsequent subproblems cannot
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generate paths covering these tasks. These blocks can also be used to establish a
priority between generated columns in order to reduce the number of path variables
added to the restricted master problem at an iteration.

The search for a lower bound generally requires a significant number of itera-
tions involving the solution of the restricted master problem and the solution of
the subproblems. Several parameters in GENCOL control different aspects of this
iterative process; a particular parameters setting is called “model” and by breach
of terminology, the linear relaxation solved using a given model is also referred
to as a model. GENCOL allows to modify the model after a certain number of
iterations and this mechanism may accelerate the solution process. A series of less
constrained or approximate models can first be solved in order to approach the
optimal solution quickly. The most complex model defined by the original problem
can finally be solved to complete the optimal solution process.

GENCOL can also handle integrality constraints imposed on path variables.
Thus GENCOL is more than a column generation algorithm, it is a branch-and-
price algorithm. The column generation scheme is embedded in a branch-and-
bound algorithm and if the optimal solution of the linear relaxation does not
satisfy integrality constraints, these requirements are enforced by taking branching
decisions on variables representing the flow on the arcs of the graph (note that no
optimal branching strategy on path variables is available). The column generation
process is then applied at each branch node to determine a lower bound at that
node.

Several branching strategies have been implemented and stored in GENCOL.
The solution process of a given problem can use more than one of these strategies.
At each branching node, the chosen branching methods compete with one another
as follows. First, a score in [0, 1] is attributed to each potential branching strategy.
Then, a hierarchy between these strategies is determined via a mapping of each
strategy’s score onto a global axis. The mapping is specific to each strategy and
implemented as a scaling followed by a translation which are determined by two
parameters; a maximum score value and a minimum score value. Finally, the
branching strategy with the best final score is chosen. This strategy-dependent
mapping process allows a strategy to be favoured to the detriment of others by
defining a mapping that will produce higher final scores. For example, consider
two branching methods, method 1 and method 2. Let the minimum and maximum
score values for method 1 be 0 and 1, respectively. Also, let 0.5 and 1.25 be the
minimum and maximum score values for method 2, respectively. The original
score (in [0, 1]) is transformed according to the extremal score values for each
method. In this case, method 2 is favoured compared to method 1. Indeed, for
equal original scores, the transformed score of method 2 will be greater than the
transformed score of method 1. In addition, if the score for method 1 is smaller
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than 0.5 and possible branching decisions can be imposed by method 2, method 1
will never be chosen (since the minimal value for method 2 is 0.5).

The exploration of the search tree can be done according to three different
search policies: depth first, best first and a combination of these two policies.

For a detailed description of the theoretical aspects behind GENCOL we refer
to (Desaulniers et al., 1998) and (Desrosier et al., 1995).

2.4 A heuristic for the MOOCP with Satellites

Sharing

In this section we will shortly describe a tabu search presented by Bianchessi
et. al (2005) for the MOOCP with Satellites Sharing. Actually we will use the
results produced by this heuristic to assess the strength of our formulations.

The authors developed a tabu search heuristic partly based on the method pre-
viously developed by Cordeau and Laporte (2005). The proposed algorithm
explores the solution space by moving at each iteration from the current solution
s, defined as sequences of strips to acquire in each orbit, to the best solution in its
neighbourhood M(s). The neighbourhood contains all the solutions that can be
generated inserting or removing a mono strip (twin strips) in or from s and mov-
ing a mono strip (twin strip) from one orbit to another. Since this rule allows the
solution to deteriorate between two successive iterations, they have implemented
an anti-cycling mechanism which attributes a tabu status to any solution pos-
sessing some attributes of recently visited solutions. An important feature of the
algorithm is the possibility of exploring infeasible solutions during the search. In
particular, time window constraints are relaxed and their violations are added as
penalities to the objective function. Let f(s) be the value of solution s defined as
f(s) = v(s) − βw(s), where v(s) is the objective function value defined by (2.1),
and w(s) is the total time window violations in solution s. The parameter β is
initially set equal to 1 and self-adjusts during the search to allow a mix of fea-
sible and infeasible solutions. More precisely, at each iteration the value of β is
multiplied by 1 + δ, with δ ≥ 0, if the current solution is infeasible and divided
by 1 + δ otherwise. In our implementation, the value of δ is randomly selected
at each iteration in the interval [0, 1]. When satellite utilization constraints are
imposed (in phase B), these constraints are also relaxed and their violations are
penalized in a similar fashion: a term γd(s) is added to the objective function
where d(s) is the total violation and γ is again a self-adjusting parameter. Finally
the algorithm uses diversification and intensification mechanisms. The mechanism
concerning diversification are the continuous scheme (now common to several tabu
search implementations), the possibility to perturb the solution under certain cir-
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cumstances, and the usage of false starts to avoid being trapped in a poor local
optimum because of the moves performed in the first few iterations. On the other
hand, to intensify the search around promising solutions, the algorithm alternates
between two modes: global search and orbit search. In global search all six types
of moves are considered whereas in orbit search, the neighbourhood is limited to
insertion and removal moves. In the latter case, it is thus impossible to move a
strip from one orbit to another. As a result, the problem decomposes by orbit and
each one can be optimized independently of the others. Moreover, from time to
time, a rescheduling of the strips in the solution is also performed in the hope of
improving feasibility.

2.5 Computational results

To assess the strength of the formulation proposed, extensive computational ex-
periments were performed on 13 data sets provided by the French Centre National
d’Études Spatiales (CNES). The upper bounds founds have been compared with
the solution values produced by the tabu search heuristic described in section 2.4.

Each data set (scenario) considers two satellites performing 12 or 13 orbits in
a 24 hour time horizon and contains requests coming from 4 different entities: A′,
A′′, B′ and B′′. We consider the problem arising for each entity of each scenario,
for a total of 52 instances. When needed, in the following we refer to A′ and A′′

instances as A instances and to B′ and B′′ instances as B instances.
We first summarize in table 2.1 the main characteristics of the instances. This

table contains 52 lines and each line provides the statistics for one data set and
one user (users are identified by the digits 1, . . . , 4). In this table, |T | is the
total number of relevant orbits for the given user, |R| is the number of requests
formulated by that user, and |N | is the number of strips in these requests (with |R|
and |N | indicating the number of priority requests and strips, respectively). The
remaining three columns indicate the number of twin strips (TS), the number of
polygon requests comprising more than one strip (PR), and the number of strips
belonging to these polygon requests (SPR).

A instances are characterized by a mean number of orbits equal to 25.19 and are
the biggest ones. The mean number of strips is equal to 2128.62 for A′ instances
and to 1589.08 for A′′ instances. B instances have at most 5 orbits and 161 strips
to consider. The presence of twin strips is more relevant in A than in B instances.
The mean percentage of twin strips is equal to 58.86% and 70.49% respectively
for A′ and A′′ instances, while it is always less than 33.60% for B instances. As
far as strips associated with polygon requests are concerned, their mean number
is approximatively the same in A instances. It is equal to 851.08 for A′ instances
and to 965.62 for A′′ instances, with a mean number of strips per polygon equal



2.6. CONCLUSIONS 24

respectively to 3.35 and 3.94. Strips belonging to polygon requests in B instances
are very few, always less than 51, with a mean number of strips per polygon equal
to 2.24. Finally the number of strips generated by priority requests is always less
than 32 and greater than 25 for all istances.

Experiments have been done with the requests of each individual user to esti-
mate the maximal utility u∗

i . We used GENCOL 4.3.18 on a 2.53GHz Pentium 4
machine.

For each data set, we first found upper bounds for the time-constrained op-
timization (phase B) for users A′ and A′′: the users associated with the most
complex instances. In this phase, user A′ was allowed 750 seconds of satellite uti-
lization and user A′′ was allowed 600 seconds. The results of these experiments
are reported in table 2.2. We indicate, for each data set, the estimate û∗

i of the
maximal utility of each user i computed by the heuristic and the value of the upper
bound u̇∗

i computed by column generation. The LP relaxation of model (2.2)-(2.8)
was solved with a maximum CPU time of 24 hours.

For user A′, the solution process was often stopped before reaching optimality.
However, the reported values should be close to the true LP values since the rate
of improvement was usually very small when the algorithm was stopped. The gap
between a dual bound and the correspondent heuristic value is always less than
3%.

We then found upper bound for the unconstrained optimization (phase C)
for all users. In table 2.3 we again report the estimate û∗

i of the maximum utility
computed with the tabu search heuristic and the upper bound computed by column
generation u̇∗

i . All the B instances’ relaxations have been optimally solved within 6
minutes, while only about the 30% of A instances have been solved to the optimum
with a time limit of 24 hours.
From the values listed in the third column, one can see that for users B instances,
the lower and upper bounds on the true maximal utility are very close. For users
A′ and A′′, the gap is larger but it is nevertheless below 3% for most instances.

Finally, in column ü∗
i upper bounds found disregarding twin strips constraints

are reported; the mean worsening ∆ of the dual bounds for A instances is equal to
4.99%. These upper bounds all represent the optimal value of the (2.2)-(2.7) LP
relaxation, and the execution time needed to compute each of them was less than
1 hour; this fact can give intuitive understanding about the difficulties to handle
twin strip constraints.

2.6 Conclusions

The planning and scheduling problem studied in this chapter involves two optical
satellites performing multiple orbits over a given planning horizon.



Table 2.1: Characteristics of the test instances

|T | |R| |R| |N | |N | TS PR SPR
16950 1 24 850 25 1788 26 1284 268 905
16950 2 25 688 25 1610 26 1114 244 968
16950 3 4 81 25 110 26 28 15 30
16950 4 2 38 25 46 26 2 3 10
16951 1 24 852 29 1764 31 1272 256 862
16951 2 24 680 29 1555 31 1110 235 912
16951 3 4 84 29 112 31 28 14 28
16951 4 3 42 29 50 31 4 2 8
16952 1 24 826 28 1704 29 1226 247 823
16952 2 25 637 28 1464 29 1060 225 869
16952 3 4 105 28 149 29 38 24 49
16952 4 3 35 28 37 29 2 1 2
16953 1 26 1272 26 2124 27 1188 240 807
16953 2 25 647 26 1483 27 1040 229 886
16953 3 5 107 26 157 27 48 25 51
16953 4 3 47 26 61 27 10 8 17
16954 1 26 1331 26 2230 27 1222 265 887
16954 2 24 678 26 1637 27 1164 254 1024
16954 3 5 106 26 154 27 46 24 49
16954 4 3 50 26 69 27 16 9 20
16955 1 26 1386 25 2298 26 1252 269 894
16955 2 25 712 25 1705 26 1150 262 1065
16955 3 5 109 25 156 26 46 23 47
16955 4 3 54 25 80 26 20 10 26
16956 1 26 1409 25 2314 26 1270 254 845
16956 2 26 705 25 1677 26 1172 258 1026
16956 3 5 98 25 137 26 34 21 43
16956 4 3 61 25 87 26 20 11 27
16957 1 26 1408 25 2314 26 1262 254 856
16957 2 25 695 25 1610 26 1122 245 955
16957 3 4 71 25 96 26 24 13 26
16957 4 3 61 25 89 26 24 10 26
16958 1 26 1398 30 2278 31 1224 244 820
16958 2 25 660 30 1521 31 1116 234 901
16958 3 4 97 30 131 31 32 18 36
16958 4 3 51 30 66 31 10 6 16
16959 1 26 1318 26 2148 27 1166 230 773
16959 2 25 644 26 1472 27 1046 233 882
16959 3 4 107 26 155 27 44 25 51
16959 4 3 50 26 63 27 10 8 16
16960 1 26 1289 27 2175 29 1238 251 848
16960 2 25 655 27 1567 29 1146 242 967
16960 3 5 108 27 161 29 54 25 51
16960 4 2 48 27 67 29 18 8 18
16961 1 26 1339 25 2240 26 1242 262 882
16961 2 24 686 25 1645 26 1132 258 1024
16961 3 5 109 25 158 26 46 25 51
16961 4 3 52 25 75 26 16 10 25
16962 1 25 1396 25 2295 26 1246 259 862
16962 2 24 709 25 1712 26 1176 270 1074
16962 3 5 107 25 151 26 40 23 47
16962 4 3 59 25 85 26 22 10 25
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Table 2.2: Results on phase B instances

Instance u̇∗i û∗i gap (%)
16950 1 3805223404.2 3767992300 0.98
16950 2 3300098874.6 3211262510 2.69
16951 1 3744713939.5 3705839270 1.04
16951 2 3310306815.1 3264970158 1.37
16952 1 3628348154.8 3607404960 0.58
16952 2 3378020344.1 3315387600 1.85
16953 1 3640794101.2 3607518450 0.91
16953 2 3496010922.8 3437097170 1.69
16954 1 3824463515.6 3785693880 1.01
16954 2 3714752867.9 3659962180 1.47
16955 1 3813543894.8 3775211230 1.01
16955 2 3706782423.7 3629722570 2.08
16956 1 3786328424.2 3763423030 0.60
16956 2 3567789302.6 3463522270 2.92
16957 1 3630315249.6 3571726490 1.61
16957 2 3475485107.3 3367949820 3.09
16958 1 3599806509.2 3528185090 1.99
16958 2 3310679570.2 3244964180 1.98
16959 1 3591576836.1 3545725890 1.28
16959 2 3348676556.0 3273139990 2.26
16960 1 3774322817.8 3705166030 1.83
16960 2 3783371342.7 3670826820 2.97
16961 1 3834729713.3 3777339880 1.50
16961 2 3625005495.4 3538572480 2.38
16962 1 3819718271.3 3818995360 0.02
16962 2 3554436120.6 3465608200 2.50

Since a given request can sometimes be satisfied by several satellites in more than
one of their orbits, the problem is not separable by satellite or by orbit. Instead,
planning must be performed simultaneously for all satellites and orbits considered.
We have considered scenari arising for 2 satellites performing 12 or 13 orbits in a
24 hour time horizon with up to about 1400 requests.

We have dealt with the reachest model presented in the literature so far. In
particular, in most of the previous works only a single satellite performing one or
more orbits has been considered. Moreover in case of multiple orbits the problem
has been semplified: it has been optimized one orbit at a time.

We have adopted a multi-commodity flow formulation which allows to decom-
pose the MOOCP into a set-partitioning master problem and an ESPPTW for
each orbit. In doing this we modelled twin strip constraints only at the subprob-
lems level, and constraints concerning the acquisition of polygon requests at both
levels. Owing to this formulation we have been able to successfully apply the
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column generation technique in finding good dual bounds. Bounds obtained for
large scale test instances provided by the CNES are at most 3.09% greater than
heuristic solution values.

Finally we have put in evidence how twin strip constraints are more difficult
to handle.



Table 2.3: Results on phase C instances

Instance u̇∗i û∗i gap (%) ü∗i ∆ (%)
16950 1 8121434414.40 7921269380 2.46 8613784020.00 5.72
16950 2 8519725566.33 8307825750 2.49 8967604188.89 4.99
16950 3 1148040470.00 1143215000 0.42 1148040470.00 0.00
16950 4 460304200.00 460304200 0.00 460304200.00 0.00
16951 1 8299202107.50 8142567589 1.89 8812323931.00 5.82
16951 2 8521161500.06 8307970310 2.50 8995192663.33 5.27
16951 3 1162619900.00 1162619900 0.00 1162619900.00 0.00
16951 4 432417350.00 432417350 0.00 432417350.00 0.00
16952 1 8120025507.10 8072741767 0.58 8575154725.33 5.31
16952 2 8334727139.47 8187730922 1.76 8721944699.83 4.44
16952 3 1450018375.00 1448856900 0.08 1450018375.00 0.00
16952 4 201099900.00 201099900 0.00 201099900.00 0.00
16953 1 10688895474.30 10517114800 1.61 11113519535.14 3.82
16953 2 8050833594.00 7941764820 1.35 8559587148.75 5.94
16953 3 1645170525.00 1638592300 0.40 1645170525.00 0.00
16953 4 454393137.50 453712550 0.15 454393137.50 0.00
16954 1 11181438393.00 10964766610 1.94 11616926583.36 3.75
16954 2 8767285963.40 8627522850 1.59 9299944360.00 5.73
16954 3 1626248245.00 1581862300 2.73 1635578775.00 0.57
16954 4 502219480.00 500463800 0.35 503491825.00 0.25
16955 1 11227212010.60 10965313340 2.33 11721749153.28 4.22
16955 2 9307786704.70 9162273460 1.56 9803741668.00 5.06
16955 3 1583466041.35 1561031550 1.42 1585216210.00 0.11
16955 4 730112125.00 727084100 0.41 730459278.57 0.05
16956 1 11141678306.70 10913704640 2.05 11540186616.36 3.45
16956 2 9111973423.27 8952492378 1.75 9683552034.67 5.90
16956 3 1419425350.00 1419425350 0.00 1419425350.00 0.00
16956 4 741393060.21 737224100 0.56 741465250.00 0.01
16957 1 11321455323.30 11036306720 2.52 11719446050.34 3.40
16957 2 8972665281.66 8744696924 2.54 9446975760.07 5.02
16957 3 918296683.33 916173400 0.23 918296683.33 0.00
16957 4 706337350.00 706321900 0.00 706533300.00 0.03
16958 1 11045919087.20 10771721876 2.48 11472186428.43 3.72
16958 2 8290378662.40 8133205239 1.90 8735993036.00 5.10
16958 3 1255131200.00 1255131200 0.00 1255131200.00 0.00
16958 4 534143750.00 534143750 0.00 534143750.00 0.00
16959 1 10785093906.10 10569211897 2.00 11189255707.21 3.61
16959 2 7695890218.20 7544282880 1.97 8178269269.73 5.90
16959 3 1569000650.00 1556985000 0.77 1569000650.00 0.00
16959 4 473587600.00 473587600 0.00 473587600.00 0.00
16960 1 10943618893.70 10785717007 1.44 11325278269.05 3.37
16960 2 8772225328.02 8632661360 1.59 9303287642.67 5.71
16960 3 1658119175.00 1645067000 0.79 1661300037.50 0.19
16960 4 339828650.00 339828650 0.00 339828650.00 0.00
16961 1 11251155019.10 10969531510 2.50 11744643925.97 4.20
16961 2 8930314251.43 8807377840 1.38 9454247950.00 5.54
16961 3 1649541270.20 1624832200 1.50 1651038146.67 0.09
16961 4 682521083.33 676261250 0.92 682521083.33 0.00
16962 1 11160184506.10 10903136180 2.30 11517864422.49 3.11
16962 2 9228142163.32 9051374719 1.92 9731362185.00 5.17
16962 3 1576907010.00 1573619000 0.21 1576907010.00 0.00
16962 4 705670500.00 696441700 1.31 705670500.00 0.00



Chapter 3

The Multi-Orbit Radar
Constellation Problem

This chapter describes a work stemming from a project commissioned by Space
Software Italia. The project concerns the management of the scientific activities
of four SAR satellites, that corresponds to the scenario of the Italian COSMO-
SkyMed project, currently under study. Owing to the SAR technology, the daylight
data acquisition constraint can be removed, and the full orbit is available for
acquisitions. We call this problem the Multi-Orbit Radar Constellation Problem
(MORCP). This chapter describes greedy constructive (randomized) algorithms
to solve the real problem taking into consideration all the details specified by
Space Software Italia. It is organized as follows. In section 3.1 we describe the
MORCP. Algorithms are explained in details in the subsequent section. To better
highlight the bottleneck activities and slack in resources, in section 3.3 we report
and discuss computational results obtained running the algorithms on different
scenari. Finally, in section 3.4 concluding remarks are outlined.

3.1 Problem description

The MORCP is a complex combinatorial problem subject to a lot of technical
and managerial constraints. Actually some aspects of the system behaviour are
exceptions of the standard operating mode.

We recall that for this kind of satellites, only one azimuth is available for
acquiring images (see section 1.4). In particular each time window associated with
a swath reduces to a single starting time, and it is called Data Take Opportunity
(in the remainder, when we say that a satellite is taking a DTO, we mean that it
is acquiring the swath with which the DTO is associated). Even if the azimuth is
constant, whenever a large target is split into several images, there still may exist a

29
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combinatorial number of ways to combine the possible swaths in order to cover the
target area. Also in this context it is assumed that the choice of which combination
to consider has been done a priori, according to rules and considerations related to
how easy it is to reconstruct the overall image (for instance, the orbits from which
the images are taken must be either all descending or all ascending). Requests are
weighted and since the system is intended for use by multiple classes of users with
different priorities some requests can be classified as high priority, while others are
low priority. Morevover, memory and energy constraints, as well as transmission
features, are considered. The default objective is to maximize the linear quality
criterion, but we consider also the one calling for the minimization of the time
needed to satisfy high priority requests.

Both satellites and ground stations may be unavailable for some given time
periods. During a period in which a station is unavailable no transmissions can
be scheduled to that station. During a period in which a satellite is unavailable
no acquisitions, transmissions or set-up changes can be planned for that satellite.
Some unavailability periods for the satellites are artificially imposed because such
periods of inactivity are used to replace an old plan by a new one.

Let us introduce some notation that will be used to illustrate in details the
problem features. K is the set of satellites, indexed by k, and R represents the set
of requests to satisfy in a given time horizon. For each request r ∈ R, we know its
priority level pr (1 for a priority request and 0 otherwise), and the set of images
Wr associated with it. Then we define W = ∪r∈R Wr as the set of images. For
each image w ∈ W , vw specifies its value, r(w) is the request to which it belongs,
and Dw is the set of DTOs associated with it. Finally let D = ∪w∈W Dw be the
set of DTOs. For each DTO d ∈ D, [ad, bd] and sd identify respectively the time
interval and the satellite set-up necessary to take it, and w(d) is the image with
which it is associated. The duration of a DTO d is implicity given by (bd − ad).

3.1.1 Setup constraints

There are three parameters that define the set-up of a satellite while it is tak-
ing a DTO. First, the satellite has two orientations, named “right-looking” and
“left-looking” and it can rotate from one orientation to the other. Second, the
SAR instrument can take images with different look-angles : to this purpose it
can switch between l different positions. Third, the SAR instrument may work
in six different operating modes, that is it can observe swaths of different width
with different resolution and it can consume different amounts of energy for each
acquisition. Thus the configuration needed to take a DTO d ∈ D is described
by the triplet <orientation, look-angle type, operating mode>. A set S contains
all these triplets and for a DTO d ∈ D the value of these three parameters
is specified in sd = (ord, lkad, opmd). Set-up operations may be necessary be-
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tween two consecutive image acquisitions and the set-up times only depend on
the two DTOs involved. Moreover the SAR instrument must be off for a mini-
mum given amount of time between any two consecutive acquisitions. During
this time interval it is not allowed to execute set-up operations either. Since
the changes in orientation, look-angle and operating mode cannot be done simul-
taneously, the overall set-up time td1d2 between two consecutive DTOs, d1 and
d2, is the sum of four terms corresponding to the four mentioned parameters:
td1d2 = δor(ord1 , ord2) + δlka(lkad1 , lkad2) + δopm(opmd1 , opmd2) + δoff .

3.1.2 Splitted requests

Whenever there are multiple images associated with the same request, they must
be acquired with look-angles of the same type (polygon constraints). For look-
angles of the same type we mean look-angles whose values belong to the same
range. In particular there are three types of look-angle: nominal, extended-high
and extended-low. A look-angle σ is nominal if σmin ≤ σ ≤ σmax, it is extended-low
if σ < σmin and finally it is extended-high if σ > σmax. To this purpose we make
the following assumption. As soon as the first partial acquisition of the target
is done, all the other images related to the same target are marked as medium
priority and they are given precedence with respect to low priority ones. This is
done in order to make unlikely the case in which a split target is only partially
acquired.

3.1.3 Memory constraints

Each satellite, say k, has two indipendent memory blocks bk
I and bk

E of a given
capacity Mk

bI
and Mk

bE
. The number of files that can be stored on each block is

also limited by F k
bI

and F k
bE

. The meaning of subscripts I and E is respectively
internal and external. Actually the efficiency with which the two memory devices
can be used is different, and the usage of the internal block has to be preferred
since it is the most efficient. A further constraint is that an acquired image must
be stored entirely in the same block. Obviously for each image w ∈ W we know
its size mw, and the number of files fw in which it must be splitted once it is
stored on a satellite memory device (all image segment files must have the same
size multiple of 1 Mbit; this is guaranted through a pre-processing).

3.1.4 Operational profile constraints

There are some operational constraints on the sequence of image acquisitions that
the SAR instrument can do. The constraints concern the activity time of the
SAR instrument in each operating mode and they represent in a compact way
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the constraints on the energy consumption of the instrument. For two operating
modes (SPOTLIGHT1 and SPOTLIGHT2), the incidence on the workload is fixed,
while for the other four (WIDEFIELD modes), the incidence is proportional to
the acquisition duration. In the remainder we will use expression like “to acquire
SPOTLIGHT1 images” to mean “to acquire images with SPOTLIGHT1 operating
mode”.

Nominal profiles. In every time window one day large the time spent to acquire
WIDEFIELD images must be less than or equal to a given limit called Tday and
the total number of SPOTLIGHT1 and SPOTLIGHT2 acquired images must be
less than or equal to Sday. In every orbit the two limits are respectively Torbit and
Sorbit (nominal profiles). Considering a 24h time window, the former constraints
bound the total workload while the latter are used to force a uniform distribution
of it.

Peak profiles. Moreover for every satellite there are two possibilities to violate
the nominal orbit profile constraints in a controlled way. A satellite can perform
a peak orbit or a triplet of peak orbits.

• Peak orbit: for a time interval one orbit large, it can spend up to 4Torbit

time in acquisitions (a SPOTLIGHT1 or SPOTLIGHT2 are normalized
through a constant factor δ and Sorbitδ = Torbit).

• Triplet of peak orbits: for a time interval three orbits large, the time
spent to acquire WIDEFIELD images must be less than or equal to Torbit,
the number of SPOTLIGHT1 and SPOTLIGHT2 acquired images must be
less than or equal to given limits called respectively S1orbit and S2orbit. The
three orbits defining the triplet must be consecutive.

A peak orbit and a triplet of peak orbits cannot overlap. Between two consecutive
peak orbits a time window of at least 24h must elapse; the same holds for triplets
of peak orbits.

As described by Space Software Italia, the constraints concerning the opera-
tional profiles represent the constraints concerning the energy consumption in a
conservative way. Thus, in the remainder all the considerations that will be drawn
about operational profiles directly apply to the energy resource.

3.1.5 Transmission

All data acquired by radar instruments have to be transmitted to ground stations.
A set X of available ground stations is given and for each element in X we known
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if it is a civil or a military station. A connection between a satellite and a ground
station is possible only when the satellite footprint area is close enough to one of
the ground stations located on the Earth surface. We call down-link opportunity
(DLO) the visibility time-window. A DLO set is given for each satellite and ground
station pair.

Transmission Channels. Transmission may occur through different channels,
labelled as channel 1 and channel 2, corresponding to two different antennae
mounted on board of each satellite k ∈ K. Both channels are capable of trans-
mission at a given bit-rate BT and each of them can be used independently. Each
station may receive information on one or two channels simultaneously; this is a
given characteristic depending on the station. The DLOs of different stations for
a same satellite may overlap; in this case the satellite can communicate with two
of them simultaneously.

Transmission Modes. With each request r ∈ R is associated a set of ground
stations Xr and a transmission mode tr. The transmission mode can be either
“AND” or “OR” (tr is equal to 1 for “AND” and 0 otherwise). If the transmission
mode is “AND”, each image w ∈ Wr must be transmitted to every ground station
listed in Xr, otherwise w must be transmitted only to one of the associated ground
stations. If an image is segmented in more than one file, the image segment files
can be transmitted separately and indipendently and, if the transmission mode is
“OR”, they can be transmitted to different ground stations. Each image segment
file is indivisible: it must be transmitted completely and without interruption on
the same channel to the same station.

GPS data. Ground stations can be either military or civil. If a DLO refers
to a military station a certain amount of GPS data must be downloaded to the
station. GPS data are automatically acquired by each satellite between each con-
secutive pair of DLOs related to military stations (the acquisition is done through
an instrument different from the one used to acquire ordinary images). Thus the
amount of GPS data that have to be transmitted in each DLO (which is small
compared with the average size of the ordinary images) can be computed at pre-
processing time. Within each military DLO, the given amount of GPS data must
be downloaded without interruptions.

Transmission vs. Acquisition. Each image w ∈ W has a given acquisition
bit-rate Bw (in Mbps) associated with it, which is equal to the ratio between the
size of the image and the duration of its acquisition. Moreover the default bit-rate
BA available to store information is also given.
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Figure 3.1: the DTO can be acquired and transmitted in (low-rate) pass-through
mode.

As specified by Space Software Italia, storage and transmission can be generally
done simultaneously. The conditions under which it is not possible vary depending
on the operative mode used: store-and-downlink or pass-through.

The satellite is in store-and-downlink mode when it is acquiring an image w′ ∈
W and it is transmitting a file of an image w′′ ∈ W , w′ 6= w′′. The usage of
the store-and-downlink mode is forbidden if the satellite is transmitting w′′ using
channel 2 and Bw′ > BA. Actually if Bw′ > BA the satellite must use also channel
2 to acquire w′.

On the other hand, the pass-through mode is used when the satellite is acquiring
and transmitting the same image w ∈ W . Let tlast be the last usage time of the
channel through which the transmission is intended to be done. The usage of the
pass-through mode is forbidden if fw > 1 or if tlast is greater than the starting
acquisition time of w. Finally there is a further condition applying in case of low-
rate pass-through, that is when Bw < BT . In this case, if the difference between
the starting acquisition time of w and its starting transmission time is less than
1/Bw, low-rate pass-through is forbidden. Actually 1/Bw is the time needed to
store 1 Mbit in the memory buffer, the minimum transmissible data size (figure
3.1).

Download time. Except in low-rate pass-through case, the time τ needed to
transmit a file of an image w ∈ W is equal to the ratio between the image file
size and BT . In the former case τ is equal to the maximum between τ ′ and τ ′′,
where τ ′ = mw/BT and τ ′′ is equal to 1/Bw plus the difference between the final
acquisition time of w and its starting transmission time (figures 3.2 and 3.3).
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Figure 3.2: the DTO can be acquired and transmitted in low-rate pass-through
mode; the time τ needed for transmission is equal to T ′′ ≡ τ ′′.

Figure 3.3: the DTO can be acquired and transmitted in low-rate pass-through
mode; the time τ needed for transmission is equal to T ′ ≡ τ ′.
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3.2 Algorithms

Planning and scheduling operations are subject to some limits on the computing
resources available: in particular, the computation of a plan on sixteen days can
take up to approximately 2.5 hours, while 50 minutes are allotted for computing a
four-day plan. After each run, the algorithm must store all pieces of information
needed to define the subsequent plan in a consistent way.

We addressed the planning and scheduling problem defined above by designing
greedy constructive (randomized) algorithms. Actually these types of algorithms
have the following advantages. First, their computational complexity is linear in
the number of DTOs and DLOs and this allows to deal with very large problem
instances. Then, they are easy to modify in order to take into account successive
modifications of the model.

We are going to describe heuristics that produce feasible solutions with respect
to all technical constraints presented in section 3.1. On the other hand, through
look-ahead and backtracking capabilities, the algorithms try to acquire the max-
imum number of high priority requests, but there are no guarantees that all of
them will be taken.

3.2.1 Preprocessing

For each satellite and for each ground station, unavailability periods must be con-
sidered. All DLOs overlapping with ground station unavailabilities or with satellite
unavailabilities are either partially reduced or disregarded. All DTOs overlapping
with satellite unavailability periods are disregarded too. Unavailabilities play a
role also during the execution that will be illustrated in the remainder.

3.2.2 Initialization

First of all, a global variable v, in which is stored the total value of taken images,
is set to 0.

Then, for each satellite k ∈ K, a DTO list DTOListk (indexed by ik) and a
DLO list DLOListk (indexed by jk) are loaded. Like for DTOs, with each DLO
d ∈ ∪k∈KDLOListk is associated a time window [ad, bd] during which the corre-
sponding ground station can receive data. Each of these lists is sorted chronologi-
cally, according to the starting time of DTOs and DLOs. The DTO lists are consis-
tent with the actual requests set, in particular we have that ∪k∈KDTOListk = D.

The state of each satellite that comes out at the end of the previous planning
is then restored. The main pieces of information maintained in the state of each
satellite k ∈ K are the following:
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• f k
I , fk

E, mk
I and mk

E: number of files stored respectively in the internal (I) and
external (E) memory blocks, and the corresponding memory occupation;

• Lk: list of stored files;

• a record opk of values concerning operational profiles.

In particular, the record opk comprises seven fields:

• tk
day and sk

day: time spent in acquiring WIDEFIELD images and number of
SPOTLIGHTx acquisitions done in the time window one day large defined
as

[
tk − 24h, tk

]
;

• tk
orbit, s1

k
orbit and s2k

orbit: time spent in acquiring WIDEFIELD images and
number of SPOTLIGHT1 and SPOTLIGHT2 acquisitions done in the time
window one orbit large defined as

[
tk − 24h

N
, tk

]
, where N is the number of

orbits performed by a satellite in 24h;

• tk
PO: the starting time of the last peak orbit performed by the satellite k;

• tk
TPO: the starting time of the last triplet of peak orbits performed by the
satellite k.

Finally, an acquisition time and two transmission times are defined for each
satellite k ∈ K. The acquisition time tk0 is the time instant in which satellite k
can start the next acquisition; the transmission time tkc for satellite k and channel
c = 1, 2 is the time instant in which satellite k can start the transmission on channel
c. A decision time tk is then defined for each satellite k as tk = min(tk0, t

k
1, t

k
2).

It must be noticed that for a satellite k ∈ K, the value of tk
day and sk

day are
computed considering all the acquisitions whose final time is greater than (tk−24h).
For a given time window, this avoids the problem to estimate the correct workload
due to a fraction of an acquisition. tk

orbit, s1
k
orbit and s2k

orbit are computed in a
similar way.

Routine Initialize
Input: sorted lists of DTOs and DLOs for each satellite; the state of each

satellite k ∈ K at the end of the previous planning.
Output: decision time tk for each satellite k ∈ K.
begin

v = 0;
for each k ∈ K

Load DTOListk and DLOListk;
ik = 1; jk = 1;
Restore satellite’s state;
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/* Initialize acquisition and transmission times */

d̂ = DTOListk[ik];
tk0 = ad̂;
d̄ = DLOListk[ik];
tk1 = tk2 = a′

d̄
;

/* Initialize decision time */
tk = min(tk0, t

k
1, t

k
2);

end

3.2.3 Main loop

The satellite with the minimum decision time is iteratively selected as the active
satellite. Each time the decision time corresponds to the time instant in which a
new DTO can be taken, a check for feasibility is done (Feasible). Suppose that
the potential acquisition satisfies all constraints, if the DTO corresponds to a high
or medium priority request, the Take function is executed, otherwise a decision
policy is applied to decide whether to Take the DTO or to Skip it. On the other
hand, if the acquisition leads to a constraints violation, the Skip will be the next
action. The Downlink operation is carried out whenever the decision time of the
active satellite corresponds to the transmission time of one of the two channels.
This means that the decision time is certainly inside one or more DLOs (since
the DLOs may overlap, it is possible that more than one station is available for
transmission when the routine is executed).

/* Main loop */
repeat

/* Select the active satellite k̄ */
k̄ = arg mink∈K{tk};
if(tk̄ = tk̄0) then

if Feasible(DTOList[ik̄]) then

if(r(w(DTOList[ik̄])) is of high or medium priority) then
Take;

else

Apply the decision policy to DTOList[ik̄] and store the boolean
outcome in TAKE;
if(TAKE=TRUE)then

Take;
else;

Skip;
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else
Skip;

else
Downlink;

until (tk̄ < H) /* H is the planning horizon */

Feasible

During the feasibility check the algorithm looks-ahead for DTOs corresponding to
higher priority requests incompatible with the DTO to be taken for overlaps or
insufficient transition time. If it finds some, the Skip action will be executed.

A DTO can be taken only if the following conditions are verified:

• if the DTO is associated with an image that results from a target splitting
and it is not the first acquisition related to that target, its look-angle must
be compatible with those of the already acquired images related to the same
target;

• if the DTO is associated with an image w ∈ W such that wB > BA, channel
2 must not be in use;

• if the DTO is not associated with a high priority request, constraints on
operational profiles must be satisfied;

• memory constraints must be satisfied.

Operational profiles. For the active satellite k̄ and a DTO d ∈ Dk̄ related to
a non-high priority request r(w(d)), the operational profile constraints checking
is done as follows. Let bd the final acquisition time of d. We redefine the last
time windows one day large and one orbit large associated with the satellite as
[bd − 24h, bd] and

[
bd − 24h

N
, bd

]
. Decreasing the values of t k̄

day, s k̄
day, t k̄

orbit, s1k̄
orbit and

s2k̄
orbit as a consequence of the forward shift of the time windows, and increasing

some of them according to the features of the image w(d), we can check if this new
acquisition leads to profile constraint violations (we can check if d is not feasible).

Let t̂ k̄
day, ŝ k̄

day, t̂ k̄
orbit, ŝ1k̄

orbit and ŝ2 k̄
orbit be the new values describing opera-

tional profiles. If the profile constraints concerning the day are violated ((̂t k̄
day >

Tday)or(ŝ
k̄
day > Sday)), d is infeasible and cannot be taken. The same happens if the

satellite k̄ is performing a peak orbit or a triplet of peak orbits ((bd − tk̄PO ≤ 24h
N

)

or (bd− tk̄TPO ≤ 324h
N

)) and peak profiles are violated: (t̂k̄orbit +(ŝ1k̄
orbit + ŝ2k̄

orbit)δ) >

2Torbit in case of peak orbit or ((t̂k̄orbit > Torbit)or(ŝ1
k̄
orbit > S1orbit)or(ŝ2

k̄
orbit >
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S2orbit)) in case of triplet of peak orbits. If the satellite is performing a nominal
orbit the constraints checking is more complicated and it is done in the following
way. If ((t̂k̄orbit ≤ Torbit)and(ŝ1k̄

orbit + ŝ2k̄
orbit ≤ Sorbit)), then d can be taken, other-

wise a further check must be done concerning the possibility to start a peak orbit
or a triplet of peak orbits. Four different situations can arise:

• ((bd − tk̄PO ≤ 24h
N

)and(bd − tk̄TPO ≤ 324h
N

)): neither a peak orbit nor a triplet
of peak orbits can be started, thus d is infeasible;

• ((bd− tk̄PO > 24h
N

)and(bd− tk̄TPO ≤ 324h
N

) or ((bd− tk̄PO ≤ 24h
N

)and(bd− tk̄TPO >
324h

N
)): only a peak orbit or only a triplet of peak orbits can be started, if

the acquisition satisfies the relative profiles, d can be taken; otherwise d is
infeasible;

• ((bd − tk̄PO > 24h
N

)and(bd − tk̄TPO > 324h
N

)): both a peak orbit and a triplet
of peak orbits can be started; if all peak profiles are violated, d is infeasible
otherwise it can be taken.

In the last case, after a time period one orbit large (starting from bd) in which
both tk̄PO and tk̄TPO have been temporarily set to bd, if peak profiles concerning
the triplet of peak orbits have been violated, tk̄TPO is reset to its previous value,
otherwise tk̄PO is reset.

Since constraints on operational profiles are very conservative, we allow to
violate them whenever it is necessary to take a DTO related to a high priority
request. Actually this kind of requests represents a small fraction of the set: if
constraint violations arise, a feasible solution can be easily recovered in a post-
processing phase.

Memory. As far as memory constraints are considered, if the amount of available
memory or the number of storable files is not sufficient in any of the memory
devices (internal block and external block), and w(d) is not a low priority image,
the algorithm backtracks.

Backtracking involves two phases, named Delete and Restore. In the Delete
phase the most recently taken images are scanned in reverse chronological order
and they are tentatively eliminated from the plan, until enough memory resources
become available to store w(d) in one of the two memory devices. During this phase
an acquisition cannot be eliminated if it has already been partially transmitted.
Moreover images can be deleted only if they are related to requests whose priority
level is strictly lower than r(w(d)). The Delete phase stops going back in time
when the starting time of the plan is reached. If this stop criterion prevents the
backtracking routine from making enough memory resources available, the Delete
phase fails, the DTO to be taken is considered infeasible and no modification is
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made to the plan. On the contrary, if the Delete phase succeeds, the DTO is
considered as feasible and the Restore phase starts. In the Restore phase the list
of temporarily deleted acquisitions is scanned again in chronological order and all
the acquisitions which do not make the DTO infeasible are restored (figure 3.4).

If backtracking succeeds, the value of v is suitable modified. On the other hand,
since to maintain consistency in the state of satellites is a very complicated task,
not all values describing the state of satellite k̄ are updated. In particular tk̄PO

and tk̄TPO are not modified. It may happen that a peak orbit or a triplet of peak
orbits that have been started before backtracking are now useless as a consequence
of the deletion of some acquistions. However, situations in which peak orbits are
not well exploited after having been started are very unusual. It is for this reason
that we do not care to modify the value of tk̄PO and tk̄TPO. Nevertheless it must
be noticed that this is a further restriction for the operational profiles. Finally,
for all satellites k ∈ K, each DTO d̂ ∈ DTOListk associated with an image whose
acquisition has been deleted is restored (see also the Take operation).

After backtracking, if the DTO has been made feasible, it is taken; otherwise
it is skipped.

Decision policies.

Decision policies may take into account different deterministic or probabilistic
criteria, depending on the value of the image, on the station to which it must be
transmitted, on the state of the active satellite, etc. (later we will discuss them in
more details).

Take

Once the decision to acquire an image is taken, all pieces of information needed to
update the active satellite’s state are computed during the feasibility check.

Then it is necessary to maintain consistency in the system. First of all, from
the list DTOListk̄ must be deleted all DTOs incompatible with DTOListk̄[ik̄] (for
overlaps or insufficient transition time) and all next DTOs d̂ such that w(d̂) =
w(DTOListk̄[ik̄]). To this purpose, satellite unavailabilities must be taken into
account. Consider the pair of DTOs d1 (equals to DTOListk̄[ik̄]) and d2 separated
by an unavailability period. Let tstart and tend be the starting and ending time of
the unavailability period considered. If bd1 + td1d2 > tstart and tend + td1d2 > ad2 ,
DTO d2 is incompatible with the acquisition of DTO d1. Second, for each satellite
k ∈ K, the DTO list DTOListk must be updated removing all next DTOs d̂ such
that w(d̂) = w(d1) and when DTOListk[ik] changes, the acquisition time tk0 must
be updated too. After the deletion process, ik̄ is incremented and tk̄0 is updated
accordingly.
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Figure 3.4: qualitative example of a succeeding backtracking process caused by an
insufficient amount of available memory.
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As a consequence of the previous operations, for a satellite k ∈ K it may
be necessary to modify its decision time tk together with the values in its state
regarding operational profiles.

Routine Take

Input : DTO index ik̄.
Output : a new state for the active satellite k̄ and possibly also for other

satellites k 6= k̄.

begin

d = DTOListk̄[ik̄]
v := v + vw(d)

/* Update active satellite’s state */

if ((mk̄
I + mw(d)) ≤M k̄

bI
) and (f k̄

I + fw(d)) ≤ F k̄
bI

))
then

mk̄
I+ = mw(d); f k̄

I + = fw(d);
else

mk̄
I+ = mw(d); f k̄

I + = fw(d);

Lk̄ ← L̂k̄;

opk̄ ← ôpk̄;

/* Clean DTO lists for the active satellite*/

Delete from DTOListk̄ all DTOs incompatible with DTOListk̄[ik̄] for overlaps
or insufficient transition time;

Delete from DTOListk̄ all next DTOs of the same image as w(DTOlistk̄[ik̄]);

/* Clean DTO lists for the other satellites*/
for each k ∈ K, k 6= k̄

Delete from DTOListk all next DTOs of the same image as w(DTOlistk̄[ik̄]);
If DTOListk[ik] changes, update acquisition time tk0;

/* Find next DTO for the active satellite */

ik̄ = ik̄ + 1;

/* Update acquisition time tk̄0 for the active satellite */

d = DTOListk̄[ik̄]

tk̄0 = ad;
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/* Update decision times for all satellites */
for each k ∈ K

tk = min(tk0, t
k
1, t

k
2);

If tk changes, update values in opk;
end

Skip

If DTO DTOListk̄[ik̄] is infeasible, this routine simply skips it incrementing the
value of ik̄ and updating the value of tk̄0. Again, if it is necessary to change the
value of the decision time, the values in opk̄ must be properly updated too.

Routine Skip

Input : DTO index ik̄.
Output : a new state for the active satellite k̄.
begin

/* Find next DTO for the active satellite */

ik̄ = ik̄ + 1;

/* Update acquisition time tk̄0 */

d = DTOListk̄[ik̄];

tk̄0 = ad;
/* Update decision time for the active satellite */

tk̄ = min(tk̄0, t
k̄
1, t

k̄
2);

If tk̄ changes, update values in opk̄;
end

Downlink

Each time a downlink operation must be executed, the decision time is equal to the
minimum between tk̄1 and tk̄2, the transmission times associated with the channels
of the active satellite. At this time, a set Gtk̄ of DLOs is available for the active
satellite, and each DLO in Gtk̄ can be characterized by the remaining time available
for downlink to the corresponding ground station.

The routine searches for a data file that can be transmitted to one of the
ground stations available at that moment. Precedence is given to GPS data files,
then stored image segmented files are considered. The file must have a size such
that its transmission ends before the DLO of the corresponding station. When
tk̄ = tk̄2 and the satellite is performing the acquisition of another image w ∈ W



3.2. ALGORITHMS 45

such that Bw > BA (the default bit-rate available to store information), no down-
link operations can be done (store-and-downlink constraint). On the other hand,
if the transmission concerns the same image that the satellite is currently acquir-
ing, conditions regarding pass-through or low-rate pass-through must be verified
(in particular, for each available satellite’s channel, the last usage time is a piece
of information stored in the satellite state). Finally, in order to make unlikely the
cases in which a split target is only partially acquired or a high priority request is
not satisfied, if tk̄ = tk̄2 we force the algorithm to look-ahead for DTOs associated
with higher priority requests whose acquisition starts before the end of the down-
link operation and requires the usage of channel 2. If some are found, transmission
is prevented.

In case of downlink, if the file transmitted is associated with an image w ∈ W
such that tr(w) is equal to “OR”, it can be deleted from Lk̄. The deletion occurs
also if tr(w) is equal to “AND” and the file has been already transmitted to all
the stations listed in Xr(w). Moreover, if the transmission is done on channel 2,
every DTO overlapping with the transmission period and whose acquisition bit-
rate is greater than BA is deleted from DTOListk̄. This automatically satisfies
the second condition tested in the feasibility check, whereas store-and-downlink
constraints can still be violated (for example at the beginning of a DLO). Finally,
if after a downlink operation tk̄ changes, the values in opk̄ must be updated.

The downlink routine must also keep consistent the time in which a satellite
can start a transmission with the times in which the available ground stations
can receive data. To perform this task, with each DLO d ∈ ∪k∈KDLOListk we
associate the actual starting time a′d in which the corresponding station can receive
data (at the beginning a′d = ad for all d ∈ ∪k∈KDLOListk) and we keep these lists
sorted according to the value of this new quantity. Whenever a new set G of
overlapping DLOs can be defined starting from d̂ = DLOListk̄[j k̄], the active
satellite’s transmission times are equal to a′

d̂
= ad̂. Then, after each downlink

operation, one or both of them are updated together with the actual starting
times of each DLO d ∈ Gtk̄ ⊆ G.

When tk̄ = min{tk̄1, tk̄2} = a′
d̂

(with d̂ = DLOListk̄[j k̄]), the satellite k̄ can
transmit to one of the stations associated with a DLO contained in Gtk̄ ⊆ G. If
tk̄1 = tk̄2 channel 1 is chosen and in the remainder, without loss of generality, we
suppose that tk̄1 ≤ tk̄2. Let τ be the time used for a transmission on channel 1
(tk̄1 ≤ tk̄2) towards the station associated with DLO d ∈ tk̄G. tk̄1 becomes equal to
tk̄1 + τ . If |Gtk̄ | = 1 and d is associated with a station that may receive information
only from one channel, also a′d and tk̄2 become equal to tk̄1 + τ since no other
transmissions can be done in the meanwhile. Otherwise all the actual starting
times associated with the DLOs contained in Gtk̄ become equal to tk̄2: the next
time at which the satellite k̄ can perform a transmission.
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It may happen that no transmission can be done at a given decision time tk̄:
there are no data to transmit towards the available stations, tk̄ = tk̄2 and a store-
and-downlink cannot take place, a pass-through should take place but not all the
constraints are satisfied, etc. In these cases a time needed for transmission τ̃ is
properly computed in order to set the trasmission time associated with the channel
that must be used to the minimum among the following values:

• the starting time aDTOListk̄[ik̄] of the next available DTO for the active satel-
lite;

• the ending time bd associated with each DLO d ∈ Gtk̄ ;

• the actual starting time a′d associated with each DLO d ∈ G \Gtk̄ ;

the actual starting time of DLOs d ∈ Gtk̄ is then updated as previously described.
In particular when |Gtk̄ | = 1, it is like if a “dummy” transmission is performed
towards the station corresponding to d ∈ Gtk̄ .

After actual starting times updating, the list DLOListk̄ could require a re-
ordering. The DLO indexed by j k̄ in the list DLOListk̄ could change. If this
happens, the actual starting time of this new DLO has to be checked: it must be
possibly set to the minimum between the new values of tk̄1 and tk̄2 (the next time
at which the satellite k̄ can perform a transmission).

Moreover a′
DLOListk̄[jk̄]

could now be equal to bDLOListk̄[jk̄]. In such a case j k̄ is

incremented until this condition holds. If the new DLO DLOListk̄[j k̄] 6∈ G, tk̄1 and
tk̄2 must be set to a′

DLOListk̄[jk̄]
, otherwise tk̄1 and tk̄2 are already set to the correct

values.

Routine Downlink

Input : DLO index j k̄.
Output : a new state for the active satellite k̄.

begin

ĉ = arg minĉ∈{1,2}{tk̄ĉ};
Gtk̄ : the set of DLOs available for the active satellite at decision time;

G: the set of DLOs that overlap with DLOListk̄[j k̄]; G ⊇ Gtk̄ ;
F : the set of data files that could be transmitted towards a ground station

associated with a DLO d ∈ Gtk̄ ;

/* If possible, execute a downlink */
Look for the first file f ∈ F that can be transmitted;
if (found) then

Compute the time τ needed for transmission;
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Update the list of stored files Lk̄;
else

τ = τ̃ ;

Update the transmission times associated with the active satellite;
Update the actual starting time a′d associated with each DLO d ∈ Gtk̄ ;

/* Update DLO list */

d = DLOListk̄[j k̄];

Reorder the list DLOListk̄ according to the actual starting time;

if (d 6= DLOListk̄[j k̄]) then

a′
DLOListk̄[jk̄]

= min(tk̄1, t
k̄
2);

/* Update j k̄ and possibly tk̄1 and tk̄2 */
repeat

j k̄ = j k̄ + 1;
until a′

DLOListk̄[jk̄]
= bDLOListk̄[jk̄];

if (DLOListk̄[j k̄] 6∈ G) then

tk̄1 = tk̄2 = a′
DLOListk̄[jk̄]

;

/* Update decision time for the active satellite */

tk̄ = min(tk̄0, t
k̄
0, t

k̄
0);

If tk̄ changes, update values in opk̄;
end

3.2.4 Finalization

After the planning, the final states of the satellites are stored. Moreover, for each
satellite, a log file describing the sequence of activities it should perform is given
in output.

Here you can see a log file passage: two DTO acquisitions and two downlink
operations are listed.

...

TIME: 2003- 0- 1T 1:46:49.140Z

Satellite’s setup changes:

SAR Operating Mode: SPOTLIGHT2 - unchanged
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SAR Incidence Angle: HIGH EXTENDED - unchanged

Looking Direction: RIGHT - unchanged

Satellite 1 has started to get DTO 101829...

TIME: 2003- 0- 1T 1:46:55.240Z

Satellite 1 has terminated to get DTO 101829.

DTO 101829 splitted in 1 files.

Memory block used: 1.

Actual memory available on block 1: 85560.00 Mbit

Number of files that can be still stored on block 1: 215.

Actual memory available on block 2: 70580.00 Mbit

Number of files that can be still stored on block 2: 206.

TIME: 2003- 0- 1T 1:52:24.428Z

Satellite’s setup changes:

SAR Operating Mode: from SPOTLIGHT2 to PINGPONG

SAR Incidence Angle: from HIGH EXTENDED to NOMINAL to LOW EXTENDED

Looking Direction: RIGHT - unchanged

Satellite 1 has started to get DTO 65648...

TIME: 2003- 0- 1T 1:52:29.428Z

Satellite 1 has terminated to get DTO 65648.

DTO 65648 splitted in 1 files.

Memory block used: 1.

Actual memory available on block 1: 84212.00 Mbit

Number of files that can be still stored on block 1: 214.

Actual memory available on block 2: 70580.00 Mbit

Number of files that can be still stored on block 2: 206.

TIME: 2003- 0- 1T 2: 3:17.690Z

Satellite 1 has started downlink at station 1 on DLO 1...

Downloading on channel 1

20977 271 1: file 0 - transmission time: 23.900 seconds - downlink and delete

Satellite 1 has finished to download.

TIME: 2003- 0- 1T 2: 3:17.690Z

Satellite 1 has started downlink at station 1 on DLO 1...

Downloading on channel 2

60726 463 1: file 0 - transmission time: 8.987 seconds - downlink and delete

Satellite 1 has finished to download.

...
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3.2.5 Decision policies

The behaviour of the algorithm depends on how the decision routine is defined.
We have considered 6 different algorithms. Half of them are deterministic, and the
others are randomized. The first and the second decision policies are trivial, the
others are defined with the aim of optimizing the performance of the system, that
is to maximize the global value of taken images.

Algorithm 0 always takes DTOs whenever possible.
On the other hand, Algorithm 1 uses a random probability to decide whether

to take a DTO or not. A new value for a normal random variable P is computed
each time the decision policy is executed. The value of P represents the probability
with which the DTO is taken.

In defining Algorithm 2 we suppose that the value of a DTO d ∈ D could be
proportional to the correspondent amount of information w(d)m (number of bits).

d is taken with probability P ′ = w(d)m

M̂
, where M̂ is (an estimate of) the maximum

size of an image.
In Algorithm 3 we balance the amount of information to be transmitted

to each ground station. To this purpose we need to give precedence to the DTOs
requiring transmission to less used stations, rather than to the DTOs for which the
ground station availability is likely to be a bottleneck. Therefore for each satellite
k ∈ K and each DTO d ∈ DLOListk requiring transmission to a station x ∈ X,
we consider the total amount mk

x of memory currently occupied on board of the

satellite by files to be transmitted to station x and we define P ′′ = 1− mk
x

(Mk
bI

+Mk
bE

)
.

A DTO is taken with probability P ′′.
In Algorithm 4, for the sake of balance between the ground stations, we

consider the total number nk
x of files stored on board of satellite k ∈ K to be

transmitted to station x ∈ X and we forbid the acquisition of images related to
stations for which nx is maximum unless all values are equal. This is the second
deterministic algorithm together with Algorithm 0.

Finally in Algorithm 5 for each satellite k ∈ K we consider again the total
amount mk

x of memory currently occupied on board of the satellite by files to
be transmitted to station x ∈ X and we define m+ = maxx∈X{mx} and m− =
minx∈X{mx}. We forbid the acquisition of images such that (a) m+−m− increases
and (b) after the acquisition m+−m− > ∆, where ∆ is a suitably tuned threshold.

3.2.6 Objective functions

We have explicitly taken into account the default objective (calling for the max-
imization of the linear quality criterion) defining the decision policies properly.
On the other hand, the minimization of the time needed to satisfy high priority
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requests is embedded in the algorithms. Backtracking and look-ahead capabilities
allow to acquire high priority requests as soon as possible. Then the downlink
routine gives precedence to their transmission.

3.3 Computational results

3.3.1 Planning and scheduling scenari

We have identified a reference scenario (scenario 0) for the sake of comparison
between the different algorithms. The best algorithm has then been executed on
alternative scenari to put in evidence bottleneck activities and slack in resources.
The alternative scenari have been generated by changing one of the parameters
defining the reference scenario.

Reference scenario

Nominal values for the parameters in scenario 0 are set as follows.

• Number of satellites = 4.

• Set of ground stations = {Kiruna, Fairbanks, Matera}.

• The set of ground stations to which each request must be transmitted in-
cludes 1 station (at random).

• Number of requests = 2000 per day.

• Position of the requests: randomly spread all over the Earth surface: the
longitude is randomly generated with uniform probability distribution in the
range [1..360]; the latitude is randomly generated with uniform probability
distribution in the range [−60..60].

• The DTOs for each request are all those complying with a deadline generated
at random with uniform probability distribution in the range [1..3] days.

• The acquisition operating mode is generated at random with uniform proba-
bility distribution in a range [1..6]; each number corresponds to one of six dif-
ferent operating modes (HUGEREGION, WIDEREGION, SPOTLIGHT1,
SPOTLIGHT2, PINGPONG, HIMAGE).
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Alternative scenari

We have considered the following alternative scenari, in which one characteristic
of the reference scenario has been changed.
Scenario 1. Number of satellites equal to 2 instead of 4. The satellites are
considered at 180 degrees from each other. We considered the same requests and
DLOs as in scenario 0.
Scenario 2. Number of ground stations equal to 2 instead of 3: Kiruna has been
eliminated, keeping only Fairbanks and Matera. The same requests of scenario 0
have been used but those requiring transmission to Kiruna have been randomly
assigned to Matera and Fairbanks.
Scenario 3. Number of transmissions for each image equal to 2, instead of 1.
To each request of scenario 0 another station has been added, generating it at
random among the two stations not associated with the request in scenario 0. In
this scenario the transmission delay is computed between the request time and
the beginning of the first transmission, while the aging is computed between the
acquisition time and the beginning of the last (second) transmission.
Scenario 4. Number of requests equal to 1000 per day, instead of 2000 per day.
We kept half of the requests of scenario 0, corresponding to a number of DTOs
equal to 374376, instead of 750687.
Scenario 5. Concentrated requests. We have considered requests concentrated
in some regions instead of uniformly scattered in latitude and longitude. We have
roughly modelled the continents by rectangles in latitude and longitude, to divide
“ground” from “sea” areas and we have generated 2000 requests per day centered
only around points belonging to “ground” areas.
Scenario 6. Larger deadlines, varying at random in the range [4...6] days instead
of [1...3] days. This yielded a number of DTOs equal to 1681592, instead of 750687.
Scenario 7. Acquisition modes without SPOTLIGHT images. All SPOTLIGHT
requests of scenario 0 have been converted at random to one of the other 4 modes.

3.3.2 Test results

Experiments have been done on a 1.60GHz Pentium 4 machine. We have run the
randomized algorithms five times and we have considered the best solutions found.
Table 3.1 summarizes the outcome of our experiments on the reference scenario
defined above. Time is indicated in hours:minutes:seconds. We report the com-
putational time of the algorithms and the value of the solutions (the total size
of the taken images, measured in Gbits). We also indicate the number and the
percentage of taken images, the average time between request time and acquisition
time, the average time between request time and transmission time, the average
time between acquisition and downlink (aging of information on board), the aver-
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Table 3.1: Comparison of different policies on the reference scenario

Algorithm 0 1 2 3 4 5

Comp. time (sec.) 57 267 289 276 55 55

Value (Gbit) 61231 61393 61270 60896 60980 60928

Taken im. num 8927 8912 8993 8920 9262 8960
Taken im.(%) 27.90 27.85 28.10 27.88 28.94 28.00

Access time 59:41:18 60:45:21 59:36:38 59:56:28 59:16:51 59:54:11
Transm. time 62:45:25 63:54:39 62:41:15 63:02:19 62:04:12 62:59:22

Aging 03:16:11 03:20:57 03:17:20 03:15:29 02:58:16 03:17:11

Mem. occ. (%) 38.47 39.75 38.75 37.62 37.08 38.31
Files in mem. (%) 6.03 6.24 6.09 5.94 5.98 6.04

Fairbanks (%) 24.01 24.17 23.77 24.91 26.01 24.16
Kiruna (%) 21.28 20.45 21.05 21.11 23.36 20.45
Matera (%) 47.89 49.91 48.83 45.82 41.94 48.58

Acq. time/orbit 00:03:19 00:03:18 00:03:19 00:03:18 00:03:16 00:03:18
Set-up time/orbit 00:08:42 00:09:19 00:09:11 00:09:13 00:08:47 00:08:51

age percentage level of memory occupation, the average percentage number of files
stored in memory, the average percentage of time available for transmission which
is actually used for transmission for each station, the average acquisition time per
satellite and per orbit and the average setup time per satellite and per orbit.

It is remarkable how the results produced by all the algorithms look so similar.
The number of taken images is about 28% of the total. The images are acquired in
average 2.5 days after their submission, and three hours later they are transmitted
back to the Earth.

The number of files that can be stored on board of each satellite is far from
being a critical resource, and even if the memory is more exploited, its average
percentage level of occupation is always less than 40% for each satellite.

As far as the average percentage of time used for transmission is concerned, it
is always less than 50% for Matera and always less than 24% for the other ground
stations. This is a consequence of the place where ground stations are located on
the Earth surface (Fairbanks is located in Alaska while Kiruna is in the north of
Sweden).

Finally it must be noticed that the average time spent in acquisition per orbit
is about 1

3
of an orbit duration; this is partially due to the time needed to perform

set-up operations among consecutive acquisitions.
These results give evidence of how the critical resource of the system (in its

default configuration) is neither the memory on board of each satellite, nor the
transmission time available for each ground station. Actually, as we will show in
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details in the next chapter, the operational profile constraints are the tightest for
the system.

As shown by computational results, Algorithm 4 allows to acquire the greatest
number of images; therefore the experiments on the alternative scenari have been
carried out using this algorithm. Test results on the alternative scenari are reported
in table 3.2.

The analysis of scenario 1 confirms that the overall acquisition and transmission
capacity of the constellation is directly proportional to the number of satellites,
whenever it is less than four.

In scenario 2 with only two ground stations available, the amount of information
obtained is 66% with respect to scenario 0 with three ground stations. Transmis-
sion time to Matera is more heavily exploited in percentage than transmission time
to Fairbanks. Matera tends to be the bottleneck and this is a consequence of the
limited time available to communicate with it. The aging of acquired images is
about 5 hours, i.e. 2 hours more with respect to the reference scenario, and this
leads to an increase of the average percentage level of memory occupation and of
the average percentage number of files stored.

In scenario 3 the necessity of double transmission for each image results in a loss
in number and value of taken images of about 17% and 27%. This suggests that
the transmission activity can influence the solution quality even if transmission
time is not a critical resource, as shown by the percentages of its exploitation.

In scenario 4, the number of requests per day is halved with respect to the
scenario 0. With only 1000 requests/day the capabilities of the satellites are not
fully exploited, actually the value and the number of taken images decrease of
about 36% and 24%.

In scenario 5, where the images requested are more concentrated, so that the
number of conflicts is higher, there is a loss of about 44% in value and of about
33% in number of taken images with respect to the reference scenario.

In scenario 6, deadlines have been enlarged so that there are approximately
twice as many data-take opportunities for each image with respect to scenario 0.
Nevertheless, we have again losses, even if they are smaller with respect to the
previous scenario: about 21% in value and about 5% in number of taken images.

In scenario 7, without SPOTLIGHT images, the performances of the algorithms
degrade since operational profiles are not fully exploited (this issue will be covered
in details in the next chapter).

The analysis of the computing time required by the algorithms on the alter-
native scenari confirms the validity of the theoretical estimation of the algorithms
complexity: the computing time is linear in the number of satellites and the num-
ber of DTOs. The dependency on the number of DLOs is not observable because
it is dominated by the dependency on the DTOs that are much more numerous.
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3.3.3 High priority requests

In scenario 0, with each request has been associated a low priority. In order to
test backtracking and look-ahead capabilities of the algorithms, we have randomly
set to high the priority of 6400 requests (20% of the total). Then we have run the
Algorithm 4 on the modified scenario 0. 96% of high priority requests have been
satisfied. This is a very good result if we consider that no pre-processing has been
done to guarantee the feasibility of high priority request acquisitions. Moreover,
high priority images represent the 99% of those taken.

3.3.4 Failures

The equipment can be broken off. For a satellite k ∈ K only a limited amount of
memory can be available on a block at a certain time. Defining properly the value
of the parameters Mk

bI
, F k

bI
and Mk

bE
, F k

bE
these situations can be easily modeled.

Moreover, only one specific transmission channel, between the two, can be available
to make a plan. During a downlink, in case of a channel failure, if c̄ is the channel
available for the active satellite k̄, all the actual starting times associated with the
DLOs contained in Gtk̄ are set equal to tk̄c̄ + τ (where τ is the time used for the
transmission).

Tests have been done for different failures scenari: one of the memory device
broken, one channel available for transmission towards ground stations, and a mix
of the previous failures. Experiments have been done considering a single satellite
on a planning horizon of 1 day. The name of each considered scenario is composed
of two digits: the number of memory blocks devices that can be used to store data
files and the number of channels available for transmission. Results are reported
in table 3.3. The results computed for scenari 1-2 and 1-1, compared respectively
to those reported for scenari 2-2 and 2-1, show how a failure in one of the memory
devices does not affect the activity that can be carried out by a satellite. On the
other hand, the unavailability of one of the two transmission channels causes a
mean loss of 12.94% in the number of taken images. Once again, these last results
suggest that the transmission activity can influence the performance of a satellite
even if transmission time is not a critical resource.

3.4 Conclusions

The optimization problem presented in this chapter concerns the management of
the scientific activities of four satellites equipped with SAR instruments performing
multiple orbits in a maximum planning horizon of 16 days. We have considered
the real problem, taking into account all the details specified by Space Software
Italia.
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Table 3.3: Failure scenari, Algorithm 4, H = 24h

Scenario 2-2 1-2 2-1 1-1

Value (Gbit) 918 920 804 806

Taken im. num 152 149 129 133
Taken im.(%) 7.60 7.45 6.45 6.65

Access time 09:13:16 09:08:08 08:28:46 09:01:47
Transm. time 11:31:56 11:52:51 10:47:45 11:06:50

Aging 03:15:57 03:27:57 03:16:28 03:19:22

Mem. occ. (%) 32.64 35.10 58.07 62.09
Files in mem. (%) 5.49 5.85 9.63 10.09

Fairbanks (%) 35.90 35.94 31.45 30.22
Kiruna (%) 34.80 35.24 33.87 31.99
Matera (%) 72.82 71.47 69.59 67.71

Acq. time/orbit 00:00:50 00:00:49 00:00:44 00:00:43
Set-up time/orbit 00:02:06 00:01:59 00:01:57 00:01:57

Among the others, we have dealt with constraints about the acquisition of poly-
gon requests and with operational constraints regarding the transmission activity
and the energy consumption on board of each satellite. To our knowledge, those
kind of constraints have seldom been studied in the Operations Research literature
related to this kind of problems. Moreover we have considered simultaneously two
objectives: the maximization of the linear quality criterion and the minimization
of the time needed to satisfy high priority requests.

We have defined greedy constructive (randomized) algorithms that compute
feasible solutions with respect to the whole set of considered constraints. By means
of backtracking and look-ahead capabilities they try to acquire all high priority
requests as soon as possible and to terminate the acquistion of splitted requests
partially taken. The minimization of the time needed to satisfy high priority
requests has been taken into consideration by defining the capabilities previously
mentioned and by giving precedence to high priority requests in transmission.
The value of the taken images has been maximized using suitable decision policies
within the algorithms.

Experimental results have been obtained running all algorithms on a reference
scenario with 2000 requests per day on a planning horizon of sixteen days, cor-
responding to more than one million DTOs. Then the best algorithm has been
tested on alternative scenari. For each scenario we could measure the percentage
of use of each ground station as well as of all system resources, such as the memory
on board of each satellite. We could also have a quantitative estimate of the access
time and the transmission time of the taken images and the percentage amount of
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time spent on acquisition and set-up operations for each orbit and each satellite.
The results found show how transmission activity and energy consumption are the
problem features that have the greatest impact on the solution quality. Finally
we have successfully tested the robustness of the best algorithm in case of high
priority requests and we have presented some results concerning failures scenari.

Owing to the features of the greedy algorithms, the observed computational
times were largely inferior to the imposed limits, since they never exceeded a few
minutes on the largest problem instances.



Chapter 4

An alternative solution
methodology for the MORCP

In this chapter we present an alternative solution methodology for the MORCP
based on Lagrangean relaxation; the aim is twofold. On one hand we look for good
dual bounds. On the other hand, we try to define quasi-feasible solutions that can
guide the heuristics presented in chapter 3 in finding better solutions than those
computed from scratch. Because of the complexity of these tasks, we limit the
planning horizon to a single day. According to the purpose of this chapter, we
introduce in section 4.1 a valid relaxation for the MORCP. The resulting problem
is modelled in section 4.2 through a multi-commodity flow formulation. In section
4.3 we present a decomposition approach based on Lagrangean relaxation. We
describe the dynamic programming algorithm defined to solve the Shortest Path
Problem with Resource Constraints arising for each satellite and we briefly discuss
the subgradient algorithm applied to find the best dual bound. Starting from the
presented approach, we illustrate in section 4.4 how quasi-feasible solutions can
be obtained for the MORCP. Computational results are reported in section 4.5,
followed by conclusions in section 4.6.

4.1 A relaxed problem

With respect to the features described in section 3.1, we relax the MORCP making
the following assumptions.

Memory. For each satellite k ∈ K, the memory blocks can be viewed as a single
big block with capacity Mk = Mk

bI
+ Mk

bE
in which an unlimited number of files

can be stored.

58
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Trasmission. We always allow a satellite to perform acquisition and transmis-
sion simultaneously, when the satellite is acquiring and transmitting the same
image as well as different images. In particular we consider a download time τ
equal to the ratio between the image file size and BT . Choosing this value for τ
leads to a valid relaxation of the MORCP: actually in low-rate pass-through this
value can be smaller than or equal to the real one (figures 3.2 and 3.3). Moreover,
as far as transmission is concerned, for each request r ∈ R we assume that Xr in-
cludes all the available ground stations and that tr is always equal to “OR”. Finally
we assume that an image segmented file can be transmitted with interruptions,
and we disregard transmission of GPS data.

Operational Profiles. We check the nominal operational profiles concerning
every time window one orbit large only in some orbits (identified as described in
section 4.2.2), and we disregard the nominal profiles constraints bounding the total
workload in the unique time window 24h large. In the worst case, the additional
time that can be used during a peak orbit is equal to 3Torbit. We do not restrict
this additional amount of time to be available in a given time window one orbit
large but we allow to consume it along the whole planning horizon, whenever
required. Finally we disregard the possibility to acquire additional SPOTLIGHT1
or SPOTLIGHT2 images during a triplet of peak orbits.

4.2 Relaxed problem formulation

As well as in the case of the MOOCP, we model the relaxed problem by means of
a multi-commodity flow formulation based on the unified framework described in
(Desaulniers et al., 1998). In particular we adopt the task-on-arc formulation
that allows to include in the network model some constraints on the path struc-
ture. In this context, a commodity and a task represent a satellite and an image
respectively. Thus the set of images W , indexed by w, represents the set of tasks
to cover (the set of images to acquire) and a commodity is defined for each satellite
k ∈ K (with |K| = 4).

In the following three sections all notation symbols defined refer to a com-
modity k ∈ K, but the superscript k has been dropped for simplicity; it will be
reintroduced starting from section 4.2.4.

4.2.1 Commodity network

A directed acyclic graph G(V , A) is related to each commodity. With the task-
on-arc representation, nodes in V represent time-space sites.
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In the set of nodes V = N ∪ {o, d}, o and d represent the source and the sink
nodes for the commodity. A node i ∈ N represents the i-th DTO listed in the
chronologically sorted list of DTOs that can be acquired by the satellite. When
the satellite is in i ∈ N , its setup is the one needed to acquire DTO i. At the end
of a plan the satellite setup in d is the one required by the last DTO taken, and
this setup is going to characterize the node o in the subsequent planning. Let ss
be the initial satellite setup for the actual planning, o can be viewed as a node
associated with an artificial DTO o such that sso = ss and [ao, bo] = [0, 0].

The arc set A is defined as follows. For each i ∈ N ∪ {o} and each j ∈ N ,
if DTOs i and j are not separated by an unavailability period for the satellite,
the arc (i, j) is feasible if bi + tij ≤ aj. Otherwise a further condition has to be
checked. Let tstart and tend be the starting and ending time of the unavailability
period considered. If bi + tij > tstart and tend + tij > aj, DTO j is incompatible
with the acquisition of DTO i and arc (i, j) cannot be inserted in A. The task
covered by the arc (i, j) is the image w(j) associated with the destination node.
Arcs directed to d always satisfy the feasibility conditions, thus an arc (i, d) can
be inserted in A for each i ∈ N . Those arcs do not cover any tasks.

Since the SPPRC is NP-hard in the strong sense, we build A reducing the
number of arcs to be taken into account.

Let us consider the set S of possible satellite configurations (see section 3.1.1):
for a given node i ∈ N ∪ {o} and a given setup ss ∈ S we evaluate each arc (i, j)
with j ∈ N and ssj = ss. If A already contains an arc (i, k) such that ssk = ss
and it is possible to define a feasible arc (k, j), the arc (i, j) is disregarded since
j is reachable from i through k. Otherwise if the arc (i, j) satisfies the feasibility
conditions, it is inserted in A. Nodes i ∈ N ∪ {o} for which no leaving arcs have
been defined are linked to the destination node d. Moreover for each arc (i, j) ∈ A
previously defined, we consider another arc (i, j) that allows to reach the node
j ∈ N without acquiring DTO j. Thus for each node i ∈ N ∪{o} we have two sets
of arcs: Ai,1 and Ai,0. The former includes all feasible arcs outgoing from i and
covering the task associated with the destination nodes j ∈ N , whereas the latter
includes all arcs that allow to reach the destination nodes while taking no image
(figure 4.1). If |Ai,1| = 0, the set Ai,0 contains only the arc (i, d).

If arc (i, j) ∈ ∪i∈N∪{o}Ai,1, it is characterized by a profit vij equal to vw(j). The
profit is set to 0 for the other arcs.

Furthermore each arc (i, j) ∈ A is characterized by memory variation and
operational profiles increments.

If arc (i, j) ∈ ∪i∈N∪{o}Ai,1 the memory variation is mij = mw(j)− δij, otherwise
mij = −δij. The parameter δij models the amount of data that can be transmit-
ted to ground stations in the time interval that elapses while the commodity is
travelling along arc (i, j), that is bj − bi.
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Figure 4.1: arcs included in Ai,1 and Ai,0 as far as setup ss(1) ∈ S is considered;
DTO j can be acquired after DTO k.
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If during this time interval no DLO is available for the satellite, then δij = 0.
Otherwise different situations can arise: there can be stations with one or two
channels, DLOs may overlap and also the number of available satellite’s channels
may vary. We distinguish between two types of available download time: ∆s and
∆d. The former takes into account all time intervals during which images can be
downloaded to a single station with one channel. The latter specifies the amount
of time during which a single station with two channels or more stations simulta-
neously are available. Let c be the number of transmission channels available for
the satellite. If c ≥ 1, δij = [∆s + (∆d · c)] ·BT , otherwise δij = 0.

The time spent in acquiring WIDEFIELD images and the number of
SPOTLIGHT1 and SPOTLIGHT2 acquired images are the two quantities con-
strained by operational profiles. Define ρij and σij respectively as the time in-
crement and the increment in the number of SPOTLIGHT1 or a SPOTLIGHT2
acquired images. Let us consider an arc (i, j) ∈ ∪i∈N∪{o}Ai,1. If DTO j is as-
sociated with a WIDEFIELD image, then ρij = bj − aj and σij = 0. On the
other hand, if w(j) is a SPOTLIGHT1 or SPOTLIGHT2 image, then ρij = 0 and
σij = 1. For the other arcs (i, j) ∈ A, ρij and σij are set to 0.

4.2.2 Operational profile resources

As previously mentioned, the nominal profiles are checked only in a discrete num-
ber of orbits. To this purpose, for each commodity we fix the number Z of orbits
to consider at a given time and we define them in the following way. For each
z ∈ {1 . . . Z} we split the time horizon in consecutive time windows one orbit

large starting from the time instants 24h/N
Z
· (z − 1), where N is the number of

orbits performed by a satellite in 24 hours. At the end of this process Z different
sequences of orbits are defined and a given time instant belongs to Z orbits, one
for each sequence (see figure 4.2).

To check operational profiles we define a resource set P z, indexed by p = 1 . . . 3,
for each commodity and for each sequence of orbits z ∈ {1 . . . Z} In a given set
P z, P z

1 represents the nominal time spent in acquiring WIDEFIELD images, P z
2

represents the number of SPOTLIGHT1 and SPOTLIGHT2 acquired images and
finally P z

3 represents the additional time spent (we recall that the additional time
is not restricted to be available in a given time window one orbit large but it can
be consumed during the planning whenever needed). Then we define T zp

i as the
resource variable specifying the amount of resource p ∈ {1 . . . 3} for the sequence
of orbits z ∈ {1 . . . Z}, consumed until node i ∈ V , on a path on the commodity
network. A path is feasible only if T zp

i ∈ [azp
i , bzp

i ] ∀z ∈ {1 . . . Z}, ∀p ∈ {1 . . . 3},
for all reached nodes i ∈ V , where [azp

i , bzp
i ] is equal to [0, Torbit], [0, Sorbit] and

[0, 3Torbit] respectively for p = 1 . . . 3, for each z ∈ {1 . . . Z}. That is a path is
feasible only if a feasible amount of each resource has been consumed along it. For
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Figure 4.2: orbit identification.

each z ∈ {1 . . . Z} and for each p ∈ {1 . . . 3}, the value of T zp
o is fixed and it is

equal to the corresponding value coming out at the end of the previous planning.
From node i to node j, (i, j) ∈ A, for each z ∈ {1 . . . Z}, the value of resource

variable related to p ∈ {1 . . . 3} is updated by means of the function f zp
ij (Tz

i ), where
Tz

i = (T zp
i | p ∈ {1 . . . 3}). These functions are the so called resource extension

functions. In the easiest cases f zp
ij assumes the form of a linear function that

depends only on the considered resource p, and it computes the consumption on
the arc (i, j) ∈ A simply by adding a value depending of the task covered by the
arc. More complex extension functions have to be defined in our case.

Consider an arc (i, j) ∈ ∪i∈N∪{o}Ai,1. For a given sequence of orbits z ∈
{1 . . . Z}, the starting time aj of DTO j lies in the time interval associated with

the orbit ωz(aj) equal to baj− 24h/N
Z

(z−1)

24h/N
c+1 if aj ≥ 24h/N

Z
(z−1) and to 0 otherwise.

For example, in figure 4.2, ωz(aj) is equal to 1, 1 and 0 respectively for z = 1 . . . 3.
Let γωz(aj) be the fraction of increments that influence the operational profiles

in the orbit ωz(aj); γωz(aj) = min
{

bj−ωz(aj)·(24h/N)

bj−aj
, 1

}
.

Consider the case 0 < γωz(aj) < 1. If ωz(bi) = ωz(aj) like in the case depicted
in figure 4.3, the value of Tz

i has to be modified accordingly to the fraction of
increments γωz(aj) before the extension, and has to be checked for feasibility. For a
given arc, only the value of one resource between P z

1 and P z
2 can directly change.

Suppose for example that w(j) is a SPOTLIGHT1 or a SPOTLIGHT2 image, the
new value T

z

i is computed as follows. If T z2
i + σijγ

ωz(aj) ≤ bz2
i nominal profile

costraints are satisfied: T
z2

i = T z2
i + σijγ

ωz(aj) and the values of the other resource
variables remain unchanged. If T z2

i + σijγ
ωz(aj) > bz2

i it is necessary to consume
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Figure 4.3: fraction of increments, case 1.

Figure 4.4: fraction of increments, case 2.

additional time: T
z3

i = T z3
i +δ(T z2

i +σijγ
ωz(aj)−bz2

i ), T
z2

i = bz2
i and T

z1

i = T z1
i (δ is

the constant factor through which a SPOTLIGHT1 or a SPOTLIGHT2 acquired
image is normalized).

On the other hand, if bi and aj are separated by more than one orbit as in figure
4.4, the partial increments cannot cause infeasibility in the orbit coming before
ωz(bj), we set T

z

i = Tz
i . If T

z

i is feasible with respect to the resource windows
associated with node i, the extension can take place. Since ωz(bi) 6= ωz(bj), the
consumption of resources P z

1 and P z
2 accumulated can be disregarded. The value

of Tz
j is defined accordingly to the fraction of increments γ̃ωz(aj) = (1− γωz(aj)).

Consider now the case γωz(aj) = 1. Tz
j is computed accordingly to the value

of ρij and σij. In particular, if ωz(bi) 6= ωz(bj) the consumption of resources P z
1

and P z
2 accumulated until node i can be disregarded. To this purpose let θij be a

binary coefficient equal to 0 if ωz(bi) 6= ωz(bj).
For each commodity and each sequence of orbits z ∈ {1 . . . Z} we can now

define the extension functions associated with an arc (i, j) ∈ A. For the resources
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P z
1 and P z

2 the functions look as follows:

f z1
ij =


+∞ if(0<γωz(aj)<1)and(not(feasible(T

z

i )))

ρij γ̃
ωz(aj) if(0<γωz(aj)<1)and(feasible(T

z

i ))and(ρij γ̃
ωz(aj) ≤ bz1

j )

bz1
j if(0<γωz(aj)<1)and(feasible(T

z

i ))and(ρij γ̃
ωz(aj) > bz1

j )
θijT

z1
i + ρij if(γωz(aj)=1)and(θijT

z1
i + ρij ≤ bz1

j )
bz1
j if(γωz(aj)=1)and(θijT

z1
i + ρij > bz1

j )

f z2
ij =


+∞ if(0<γωz(aj)<1)and(not(feasible(T

z

i )))

σij γ̃
ωz(aj) if(0<γωz(aj)<1)and(feasible(T

z

i ))and(σij γ̃
ωz(aj) ≤ bz2

j )

bz2
j if(0<γωz(aj)<1)and(feasible(T

z

i ))and(σij γ̃
ωz(aj) > bz2

j )
θijT

z2
i + σij if(γωz(aj)=1)and(θijT

z2
i + σij ≤ bz2

j )
bz2
j if(γωz(aj)=1)and(θijT

z2
i + σij > bz2

j )

and for P z
3 the extension function is:

f z3
ij =


+∞ if(0<γωz(aj)<1)

and(not(feasible(T
z

i )))

T
z3

i +(ρij γ̃
ωz(aj) − bz1

j )+ + δ(σij γ̃
ωz(aj) − bz2

j )+ if(0<γωz(aj)<1)

and(feasible(T
z

i ))

T z3
i +(θijT

z1
i + ρij − bz1

j )+ +δ(θijT
z2
i +σij −bz2

j )+ if(γωz(aj)=1)

4.2.3 Memory resources

To check memory constraints we define a new resource Q representing the memory
consumption for each commodity. Let TQ

i be the resource variable specifying the
value of the resource Q accumulated at node i ∈ V during a path, and let the
resource window [aQ

i , bQ
i ] be equal to [0, M ] for each i ∈ V . For the considered

resource, the extension function associated with an arc (i, j) ∈ A can be defined
as fQ

ij = TQ
i + max{0, TQ

i + mij}.

4.2.4 A model

For k ∈ K, let xk
ij, with (i, j) ∈ Ak, denote the flow variables which are equal to 1

for the arcs in the solution path of commodity k and 0 otherwise. Then let W be the
set of images w ∈ W such that pr(w) = 1 and define also Ŵ = {w ∈ W | pr(w) = 0}.
The integer formulation for the relaxed version of the MORCP is the following:
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max
∑
k∈K

∑
(i,j)∈Ak

vk
ijx

k
ij (4.1)

s.t.:
∑
k∈K

∑
(i, j) ∈ Ak

i,1|
w(j) = w

xk
ij = 1 ∀w ∈ W (4.2)

∑
k∈K

∑
(i, j) ∈ Ak

i,1|
w(j) = w

xk
ij ≤ 1 ∀w ∈ Ŵ (4.3)

∑
j|(ok,j)∈Ak

xk
okj = 1 ∀k ∈ K (4.4)

∑
j|(i,j)∈Ak

xk
ij −

∑
j|(j,i)∈Ak

xk
ji=0 ∀k ∈ K, ∀i ∈ Nk (4.5)

∑
j|(j,dk)∈Ak

xk
jdk = 1 ∀k ∈ K (4.6)

xk
ij(f

kzp
ij (Tkz

i )−T kzp
j )≤0 ∀k ∈ K, ∀z∈{1...Zk},∀p∈{1...3},∀(i, j) ∈ Ak (4.7)

akzp
i ≤ T kzp

i ≤ bkzp
i ∀k ∈ K, ∀z ∈ {1...Zk},∀p ∈ {1...3},∀i ∈ V k (4.8)

xk
ij(f

Qk

ij (TQk

i )−TQk

j )≤0 ∀k ∈ K, ∀(i, j) ∈ Ak (4.9)

aQk

i ≤ TQk

i ≤ bQk

i ∀k ∈ K, ∀i ∈ V k (4.10)

xk
ij ∈ {0, 1} ∀k∈K, ∀(i, j)∈ Ak (4.11)

The objective function (4.1) maximizes the sum of the arc profits. Linking con-
straints (4.2) are the set-partitioning constraints for priority requests, while linking
constraints (4.3) state that each image belonging to non priority requests have to
be acquired at most once. Constraints (4.4)–(4.6) define the classical network flow
constraints for a path originating at source node and ending at destination node.
The non-linear constraints (4.7, 4.9) express the compatibility requirements among
flow and resource variables. Finally, the resource window constraints are given by
(4.8, 4.10), while constraints (4.11) impose binary values for the flow variables.
Constraints (4.4)–(4.11) are separable by satellite and together with (4.1) they
define a SPPRC (Shortest Path Problem with Resource Constraints) structure for
each commodity k ∈ K.

As far as dual bounds for the MORCP are concerned, those found solving a
relaxation of this problem are valid except for a constant factor. Actually the
profit of SPOTLIGHT1 and SPOTLIGHT2 images is equal to a fixed amount p,
and in a triplet of peak orbits the number of SPOTLIGHT1 and SPOTLIGHT2
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acquired images can increase up to (S1orbit+S2orbit) in each time window one orbit
large. Thus an upper bound value for (4.1)–(4.11) becomes valid for the MORCP
increasing it by a factor of p · 3 · ((S1orbit + S2orbit)− Sorbit.

4.3 Lagrangean relaxation

In the problem P defined by (4.1)-(4.11), the objective (4.1) and the constraints
sets (4.4)–(4.11) are separable by commodity. We obtain dual bounds solving the
problem by means of the Lagrangean relaxation decomposition approach (Geof-
frion , 1974).

Consider the integer program:

(IP )

z = max cTx
Ax ≤ b
Dx ≤ d
x ∈ Zn

+

where A is an l × n matrix, D is an m × n matrix, c ∈ Rn, b ∈ Rl and d ∈ Rm.
Suppose that the constraints Ax ≤ b are “nice” in the sense that an integer
program with just these constraints is easy. Thus if one drops the “complicating
constraints” Dx ≤ d, the resulting relaxation is easier to solve than the original
problem IP . However, the resulting bound obtained from the relaxation may be
weak, because some important constraints are totally ignored. One way to tackle
this difficulty is by Lagrangean relaxation.

For any value of u = (u1, . . . , um) ≥ 0, the problem

(IP (u))
z(u) = max cTx + u(d−Dx)

Ax ≤ b
x ∈ Zn

+

is the Lagrangean relaxation of IP with parameter u. In (IP (u)) the complicating
constraints are handled by adding them to the objective function as a penality
term. The components of u are the Lagrangean multipliers (or dual variables)
associated with the constraints Dx ≤ d. By solving the (IP (u)) we obtain an
upper bound on the optimal value of IP . To find the best (smallest) upper bound
over the infinity of possible value for u it is necessary to solve the Lagrangean dual
problem:

zLD = min{z(u)|u ≥ 0}.

We consider two different sets of Lagrangean multipliers. Linking constraints
(4.2) are relaxed by means of multipliers λw, with w ∈ W . Then, for each w ∈ Ŵ ,
a multiplier µw > 0 is associated with the corresponding constraint in the set (4.3).
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For given values of λ and µ, the Lagrangean relaxation P (λ, µ) can be defined in
the following way:

z(λ, µ) =
∑
k∈K

zk +
∑
w∈W

λw +
∑
w∈cW

µw (4.12)

where, for each commodity k ∈ K, zk is the optimal value of the SPPRC modelled
below.

max
∑

(i, j) ∈ Ak
i,1|

w(j) ∈ W

(vk
ij− λw)xk

ij +
∑

(i, j) ∈ Ak
i,1|

w(j) ∈ cW
(vk

ij− µw)xk
ij (4.13)

s.t.:
∑

j|(ok,j)∈Ak

xk
okj = 1 (4.14)

∑
j|(i,j)∈Ak

xk
ij −

∑
j|(j,i)∈Ak

xk
ji = 0 ∀i ∈ Nk (4.15)

∑
j|(j,dk)∈Ak

xk
jdk = 1 (4.16)

xk
ij(f

kzp
ij (Tkz

i )−T kzp
j )≤0 ∀z∈{1...Zk},∀p∈{1...3},∀(i, j)∈Ak (4.17)

akzp
i ≤ T kzp

i ≤ bkzp
i ∀z∈ {1...Zk},∀p∈{1...3},∀i ∈ V k (4.18)

xk
ij(f

Qk

ij (TQk

i )−TQk

j )≤0 ∀(i, j) ∈ Ak (4.19)

aQk

i ≤ TQk

i ≤ bQk

i ∀i ∈ V k (4.20)

xk
ij ∈ {0, 1} ∀(i, j)∈ Ak (4.21)

Solving P (λ, µ), we obtain a valid dual bound for the MORCP. In order to find
the best dual bound we need to solve the Lagrangean dual problem defined as:

zLD = min{z(λ, µ)|µ ≥ 0}. (4.22)

4.3.1 A dynamic programming algorithm for the SPPRC

For each commodity k ∈ K, the SPPRC is defined on an acyclic graph Gk(V k, Ak).
Dynamic programming solution approaches for the SPPRC systematically build
new paths from the source of the graph, by extending them from node to node
into all feasible directions. Their efficiency depends on the ability to identify and
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discard paths which are not useful either to build a Pareto-optimal set of paths or
to be extended into Pareto-optimal paths. Discarding useless paths is achieved by
applying dominance rules, which will be illustrated in the remainder.

To illustrate the dynamic programming algorithm implemented, some con-
cepts have to be introduced; first of all, the concept of a label. Define Rk

as the set of all resources considered for a given commodity k ∈ K, thus
Rk = {P k1

1 , P k1
2 , P k1

3 , . . . , P kZk

1 , P kZk

2 , P kZk

3 , Qk}. With each path Pi from the ori-
gin ok to i satisfying the resource windows is associated a label (Ti, Pi). T is a

vector (T 1
i , T 2

i , . . . , T
|Rk|
i ) storing the quantity of each resource used by the path,

and Pi is the path profit. These labels are iteratively computed along the path
Pi = (i0, i1, . . . , iH) as:

(Ti0 , Pi0)=(T k11
ok , T k12

ok , T k13
ok , ..., T kZk1

ok , T kZk2
ok , T kZk3

ok , TQk

ok , 0)

(Tih , Pih)=(fkzp
ih−1,ih

(Tkzp
h−1) ∀z ∈ {1...Zk},∀p ∈ {1...3}; fQk

ih−1,ih
(TQk

h−1), Pih−1
+ vih−1ih)

where i0 = ok and iH = i.
Let (T 1

i , P 1
i ) and (T 2

i , P 2
i ) be two different labels for two paths from ok to i. The

first label dominates the second, i.e., (T 1
i , P 1

i ) � (T 2
i , P 2

i ) if and only if (T 2
i −T 1

i ) ≥
0 and (P 1

i − P 2
i ) ≥ 0. A label (Ti, Pi) at a given node i is said to be efficient if no

other labels at i dominate it. By extension, also the corresponding path is said to
be efficient. This dominance relation defines a partial order on the labels and this
implies the possibility of several efficient paths for each node.

Define now Qi, i ∈ V k to be the set of labels of node i and let EFF (Qi) denote
the set of efficient labels among the set of labels Qi of node i. The set of efficient
labels at each node can be computed by dynamic programming. The longest path
from ok to dk satisfying the resource window constraints is obtained directly from
the set EFF (Qdk): it is represented by the label with the greatest profit.

We implement a label setting algorithm. The defining property of a label setting
algorithm is that those labels chosen to be extended (in the path extension step) are
kept without modification until the end of the labelling process. They will not be
identified as discardable in subsequent checks for dominance. Labelling algorithms
that do not guarantee this behaviour are called label correcting algorithms. The
general ideas of label setting as well as label correcting algorithms in the context
of the one-dimensional Shortest Path Problem (SPP) are, for instance, explained
in the book of Ahuja et. al. (1993). The algorithm proposed is an extension of the
Dijkstra algorithm (Dijkstra , 1959). Actually even if the profit of the arcs may
be negative due to the presence of dual variables, for each commodity k ∈ K the
graph Gk(V k, Ak) is acyclic and it is defined in such a way that an arc (i, j) ∈ Ak

if and only if i < j.
Let Γ(i) = {j|(i, j) ∈ Ak} be the set of successors of node i. A basic operation

in label setting or label correcting algorithms is the extension of a label (Ti, Pi).
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It consists in creating new labels at nodes j ∈ Γ(i) by adding arc (i, j) to the path
from ok to i associated with labels (Ti, Pi). In our case, the new label for a given
j ∈ Γ(i) is:

gij(Ti, Pi) =

(fkzp
ij (Tkzp

i ) ∀z ∈ {1...Zk},∀p ∈ {1...3}; fQk

ij (TQk

i ), Pi + vij) if(feasible(Tj))

∅ otherwise

The extension of node i is the extension of all labels in Qi. The set of new labels
at each node j ∈ Γ(i) is

⋃
q∈Qi

gij(T q
i , P q

i ). Since the definition of the resource
extension functions, not all new labels will be efficient. Moreover, some new labels
may dominate or may be dominated by some labels already in Qi. Hence, the new
set of efficent labels at node j is given by EFF (

⋃
q∈Qi

gij(T q
i , P q

i ) ∪ Qj). For a
given commodity k ∈ K, the algorithm can be described as follows:

Initialization
Qk

o ={(T 1
ok = (T k11

ok , T k12
ok , T k13

ok , ..., T kZk1
ok , T kZk2

ok , T kZk3
ok , TQk

ok , 0), P 1
ok = 0)};

Qi ={(T 1
i = (bkzp

i ∀z ∈ {1...Zk},∀p ∈ {1 . . . }; bQk

i ), P 1
i = −∞)}; ∀i ∈ V k/ {ok}

Extension
for i = 1 to |V k|

for each j ∈ Γ(i)
for each q ∈ Qi

Qj = EFF (gij(T q
i , P q

i ) ∪Qj);

The efficiency of the dynamic programming algorithm outlined above heavily
relies upon the data structures used to represent the set of labels.

Consider for example the case in which label sets are implemented by using a
generic list. For a given j ∈ V k, to keep Qj efficient, each time a new feasible label
(Tj, Pj) can be possibly inserted in the set, it is necessary to verify if (T q

j , P q
j ) �

(Tj, Pj) for all q ∈ Qj. Moreover if (Tj, Pj) is Pareto-optimal, all labels must be
considered again to check if some of them are dominated. Insertion can thus be
very costly with a high number of labels, and most of the times this is the case.

For a given commodity k ∈ K, we implement the label set Qi associated with
each i ∈ V k by defining a three-dimensional matrix M of (m × n × p) elements,
where m = dTorbit

α
e, n = dSorbit

β
e, p = d3Torbit

γ
e, and α, β, γ are parameters suitably

chosen. Each element of the matrix is a doubly linked list in which labels are kept
in non-increasing order according to the value of their profit. For a given q ∈
Qi, the label (T q

i , P q
i ) is listed in the matrix element M [dT k11

i
q

α
e][dT k12

i
q

β
e][dT k13

i
q

γ
e].

Moreover with each matrix element M [x][y][z], with x ∈ {1 . . . m}, y ∈ {1 . . . n}
and z ∈ {1 . . . p}, we associate two variables, M [x][y][z] and M [x][y][z], whose value
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is respectively the minimum and the maximum profit associated with the labels in
the corresponding list. Thanks to this implementation, when a new label (Tj, Pj)
has to be inserted in Qj, we know that (Tj, Pj) can be dominated only by a label

listed in a matrix element M [x][y][z] such that 1 ≤ x ≤ dT k11
j

α
e, 1 ≤ y ≤ dT k12

j

β
e,

1 ≤ z ≤ dT k13
j

γ
e and M [x][y][z] ≥ Pj. On the other hand we know also that

(Tj, Pj) can dominate only labels listed in a matrix element M [x][y][z] such that

dT k11
j

α
e ≤ x ≤ m, dT k12

j

β
e ≤ y ≤ n, dT k13

j

γ
e ≤ z ≤ p and M [x][y][z].min ≤ Pj. When

we are looking for a label that can dominate (Tj, Pj), we scan the list associated
with a matrix element forward from the head, until the profit of the considered
label is less than Pj. In the other case we scan the list backward from the tail,
and we stop when the profit of the considered label is greater than Pj.

4.3.2 Solving the Lagrangean dual

We solve the Lagrangean dual by applying the iterative subgradient method. As
far as problem (4.22) is concerned, at each iteration i this algorithm computes the
dual bound z(λi, µi) by keeping the best value found so far. Then it adjusts the
Lagrangean multipliers by moving from the present point (λi, µi) in the direction
opposite to a subgradient of z(λ, µ) at (λi, µi). In our case, updating is done in
the following way:

µi+1
w = max{0, µi

w −∆i(1−
∑

k∈K

∑
(i, j) ∈ Ak

i,1|
w(j) = w

x̄k
ij)} ∀w ∈ W

λi+1
w = λi

w −∆i(1−
∑

k∈K

∑
(i, j) ∈ Ak

i,1|
w(j) = w

x̄k
ij) ∀w ∈ Ŵ

where x̄k, with k ∈ K, represents the optimal solution of the Lagrangean problem
P (λi, µi), and ∆i is the step length.

The algorithm has been implemented as described in (Beasley, 1992), where
the rules used to update the step length from iteration to iteration are also ex-
plained. In particular, at each iteration i, we compute a lower bound by removing
from the optimal solution of P (λi, µi) all the acquisitions that lead to a violation
of constraints (4.2) and (4.3).

4.4 Defining quasi-feasible solutions

To compute quasi-feasible solutions, we consider the problem (4.1)–(4.7), (4.11)
taking into account only nominal operation profiles in the SPPRC arising for each
commodity k ∈ K ([akz3

i , bkz3
i ]=[0, 0] for all z ∈ {1 . . . Zk}).



4.5. COMPUTATIONAL RESULTS 72

We randomly define a permutation πK = {k1, . . . , kK} over the set K. Then, ac-
cording to this permutation, we consider sequentially the K subproblems.
For a given kt ∈ πK , we do not take into consideration all arcs (i, j) ∈ ∪i∈V kt A

kt
i,1

such that w(j) is an image already acquired by a commodity ks with 1 ≤ s ≤ t.
Then we solve the resulting SPPRC by means of a modified version of the dynamic
programming algorithm described in section 4.3.1 that prevents the multiple ac-
quisitions of an image along a path. The difference lies in an additional checking
during the extension of a label. The creation of a new label at node j ∈ Γ(i), by
adding arc (i, j) ∈ Akt

i,1 to the path Pi = (i0, i1, . . . , iH) associated with the label

(Ti, Pi), is prevented if ∃h, 1 ≤ h ≤ H | w(ih) = w(j) ∧ (ih−1, ih) ∈ Akt
ih−1,1.

At the end of this process we obtain a feasible solution for the problem (4.1)–(4.7),
(4.11): a path P(kt) for each kt ∈ πK .

Then, we apply a post-processing phase to exploit for each satellite the possi-
bility to perform a peak orbit and a triplet of peak orbit.
For a satellite kt ∈ πK we identify first the peak orbit. For each acquired DTO
ij in P(kt) = (i0, i1, . . . , iH) we consider a time window one orbit large starting
at aij and we evaluate the increase in the solution value that can be obtained by
performing new acquisitions within the time window. The new acquisitions are
selected by considering sequentially all DTOs that can be taken by the satellite
during the orbit: a DTO can be taken if it is compatible with those already listed
in P(kt), if it does not lead to violations of the peak profile constraints and if it
is associated with an image not yet acquired. The orbit associated with the best
increase becomes the peak orbit and P(kt) is modified accordingly.
In a similar way we next identify the triplet of peak orbits not overlapping with
the peak orbit.

The solution finally obtained identifies a subset of DTOs to acquire and it
can be used as a guide for a heuristic. It is quasi-feasible in the sense that the
constraints not explicitly taken into account can be still violated.

4.5 Computational results

The solution methodology proposed has been tested on 5 problem instances given
by Space Software Italia. Each of them concerns 4 satellites performing about 15
orbits in a time horizon of one day. In these instances, none of the considered
requests is of high priority or splitted and with each image is associated a profit
equal to 1 (i.e. the objective is to maximize the number of taken images). In
table 4.1 we summarize the main characteristics of the instances. |W | is the
cardinality of the image set (one image for each request coming from the user). The
remaining three columns indicate respectively the percentage of SPOTLIGHT1,
SPOTLIGHT2 and WIDEFIELD images in the set.
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Table 4.1: Test instances

Instance |W| SP1 SP2 WF

1 1327 0 1064 263
2 1000 119 130 751
3 2000 74 295 1631
4 1000 95 103 802
5 1600 153 166 1281

Table 4.2: Commodity network size

Instance |V| |A|
1 1573.50 158476.50
2 1192.75 220034.75
3 3977.75 544543.50
4 2206.00 243825.00
5 3432.25 587219.75

For all the instances, the number of requests is greater than 1000, with a
maximum of considered requests equal to 2000. Except for the first instance where
there are no SPOTLIGHT1 images and the SPOTLIGHT2 images are 80% of the
total, in average SPOTLIGHT1 and SPOTLIGHT2 images represent together 21%
of the considered images. The average size of the commodity networks generated
from each instance is listed in table 4.2. |V | is the average number of nodes,
whereas |A| represents the average number of arcs.

Experiments have been done on a 1.60GHz Pentium 4 machine. For each in-
stance we have found dual bounds by solving different relaxations. We define
P (1)(λ, µ) by considering a set of resources that includes only the memory. Then,
taking into account only operational profile resources for a number of orbit se-
quences equal to 1 for each commodity, we define P (2)(λ, µ). Finally, starting
from this latter relaxation, we derive P (3)(λ, µ), where we allow each discrete
orbit to be a peak orbit, and P (4)(λ, µ), where WIDEFIELD taken images are
combined linearly with SPOTLIGHT1 and SPOTLIGHT2 acquisitions in evalu-
ating nominal profiles. In P (3)(λ, µ), for each commodity k ∈ K, the resource set
P k1 = {P k1

1 } and [ak11
i , bk11

i ] = [0, 4Torbit] for each i ∈ V k. Whereas in P (4)(λ, µ),
P k1 = {P k1

1 , P k1
3 } and [ak11

i , bk11
i ], [ak13

i , bk13
i ] are equal to [0, 2Torbit], [0, 3Torbit]
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Table 4.3: Dual bounds

Instance z
(1)
LD z

(2)
LD z

(3)
LD z

(4)
LD

1 898.504 673.941 895.476 954.490
2 703.504 876.619 701.398 821.559
3 2472.972 - 1996.071 -
4 1017.995 1456.481 1002.718 1505.500
5 2085.116 - 1589.840 2164.000

for each i ∈ V k. In both relaxations, SPOTLIGHT1 and SPOTLIGHT2 acqui-
sitions are converted in time consumptions through a constant factor. We solve
the Lagrangean dual (4.22) associated with the four mentioned relaxations with

a maximum CPU time of 6 hours. For each instance, the dual bound z
(i)
LD, with

i = 1 . . . 4, is reported in table 4.3 and the best dual bound is bolded. In partic-
ular, the values in the columns z

(2)
LD and z

(4)
LD are already increased by the needed

constant factor (see section 4.2.4) and are valid dual bounds for the MORCP.
The dual bounds found by using operational profiles resources are always better

than those found by considering the memory resource: the percentage of improve-
ment ranges from 0.14% to 33.32%. This shows how the operational profile con-
straints are the most conservative. Increasing the cardinality of the resource set,
the number of labels per node evaluated by the dynamic programming algorithm
increases exponentially. Thus more time is required to solve the SPPRC associated
with each commodity and fewer iterations can be performed by the subgradient
algorithm within 6 hours. In particular, due to the size of the considered instances,
only for the relaxation P (3)(λ, µ) we have been able to approximate the optimal

value of the associated Lagrangean dual. This is why the value listed in z
(3)
LD are

in general better than those reported in z
(2)
LD and z

(4)
LD.

We have tried to improve the value obtained for the relaxation P (3)(λ, µ) by
considering a number of orbit sequences equal to 2 and 3. Results are reported in
table 4.4.

Not surprisingly, only for the smallest instances we have been able to obtain
slightly better dual bounds. Actually a greater number of orbits give rise to an
increase in the number of resources to consider, with the drawbacks previously
discussed.

Then we have computed primal bounds by guiding the Algorithm 4 described
at the end of the previous chapter by means of quasi-feasible solutions. For each
instance, we report in column z(G) of table 4.5 the results computed giving in input
to the algorithm the subset of DTOs selected in the quasi-feasible solution found
as described in section 4.4. Column z(S) contains the results computed by the



4.5. COMPUTATIONAL RESULTS 75

Table 4.4: Dual bounds, z
(3)
LD, multiple orbit sequences

Instance Zk = 1 ∀k ∈ K Zk = 2 ∀k ∈ K Zk = 3 ∀k ∈ K

1 895.476 894.793 892.807
2 701.398 701.471 700.700
3 1996.071 2328.281 3022.500
4 1002.718 1214.509 1649.000
5 1589.840 2261.000 2260.000

Table 4.5: Primal bounds

Instance z(G) z(S) gap(%)

1 548 513 6.82
2 644 588 9.52
3 1384 1506 -8.10
4 783 822 -4.74
5 1033 1034 -0.09

algorithm from scratch. In the last column of the table we report the gap between
the two values.

For the smallest instances, 1 and 2, we improve the solution respectively of
6.82% and 9.52%, whereas for the other instances the quality of the solutions
computed from scratch is better. This suggests that the choice of the acquisitions
to schedule becomes less important proportionately to the increase of the number of
possible acquisitions. Since the time needed to compute the quasi-feasible solutions
for instances 1 and 2 is less than 2 minutes, the solution methodology proposed
represents a valid alternative to solve instances of the MORCP that are relatively
small.

Table 4.6: Bounds comparison

Instance z∗ z∗ gap(%)

1 548 673.941 18.69
2 644 700.700 8.09
3 1506 1996.071 24.55
4 822 1002.718 18.02
5 1039 1589.840 34.65
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Finally in table 4.6 we report for each instance the best values found for pri-
mal and dual bounds. We recall that, due to the size of the considered problem
instances, only for the relaxation P (3)(λ, µ) we have been able to approximate the
optimal value of the associated Lagrangean dual by means of the subgradient al-
gorithm. This relaxation allows each discrete orbit to be a peak orbit. Thus, with
respect to the real operational profile constraints, the additional time available
increases by about a factor equal to 3. This is why for the biggest instance, the
dual bounds computed do not represent a significant term of comparison for the
corresponding heuristic solution value.

4.6 Conclusions

In this chapter we have considered the MORCP for a planning horizon of 1 day.
To find dual bounds, we have modelled a relaxed version of the problem through
a multy-commodity flow formulation. Then we have applied to this last the La-
grangean relaxation approach. The problem features that have the greatest impact
on the solution quality, that is acquisition and transmission activities, as well as
energy consumption, have been modelled in the relaxed problem by means of re-
sources. In particular, nominal operational profiles constraints are checked at a
given time for a discrete number of orbits and the model has been parameter-
ized according to this number. A SPPRC can be identified in the formulation for
each commodity and by applying the decomposition approach each subproblem
can be solved indipendently. To this purpose, we have efficiently implemented a
label setting algorithm. Dual bounds have been computed by applying the sub-
gradient method to the Lagrangean dual. Finally, starting from this approach, we
have illustrated how quasi-feasible solutions can be obtained to guide heuristics
previously defined in finding better solutions than those presented from scratch.

Experimental results have been obtained for five problem instances given by
Space Software Italia. The biggest instance considers 2000 requests; the corre-
sponding subproblems have been solved on a graph involving about 4000 nodes
and 500000 arcs. We have computed valid dual bounds with different settings; the
results found show how the operational profiles constraints are the most conser-
vative. Moreover, for the smallest instances, guiding the Algorithm 4 described
at the end of the previous chapter by means of quasi-feasible solutions, we have
been able to improve in average the solution value of 8.17%. Nevertheless, due to
the size of the problem instances considered, some of the dual bounds computed
do not represent a significant term of comparison for the corresponding heuristic
solution value.



Chapter 5

Conclusions

In this thesis, by means of Operations Research techniques, we have tackled two
planning and scheduling problems arising for AEOS: the Multi-Orbit Optical Con-
stellation Problem (MOOCP) and the Multi-Orbit Radar Constellation Problem
(MORCP). The MOOCP concerns the management of the scientific activities for
the French PLEIADES constellation of optical satellites, whereas the MORCP
regards the management of four satellites equipped with SAR instruments with
respect to the payload utilization: the Italian COSMO-SkyMed constellation is
the reference scenario. For both problems we have dealt with the richest model
presented in the literature so far. In particular in the MORCP we have considered
all the real problem details specified by Space Software Italia.

Bianchessi et. al (2005) defined a tabu search heuristic to solve the MOOCP
with Satellites Sharing that can be applied also to our MOOCP. Then, as far as
this problem is concerned, in this thesis we have focused on the definition of an
upper bounding procedure with the aim to find tight dual bounds. On the other
hand we have defined for the MORCP a procedure to find dual bounds as well as
heuristic algorithms.

The heuristics defined for the MORCP are greedy constructive (randomized)
algorithms. They compute feasible solutions with respect to all technical con-
straints and try to satisfy constraints about high priority request acquisitions by
means of backtracking and look-ahead capabilities.

As far as dual bounds are considered, to compute them we have modelled
the two problems through a multi-commodity flow formulation inspired from the
unified framework for vehicle routing and scheduling problems described by De-
saulniers et al. (1998). Optical satellites can acquire images only during their
enlightened revolution, thus we have identified a commodity for each orbit while
modelling the MOOCP; on the other hand, a relaxed MORCP has been formulated
by defining a commodity for each satellite. Then we have solved the two problems
using equivalent primal and dual decomposition approaches: Dantzig-Wolfe de-
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composition approach (Dantzig and Wolfe, 1960) and Lagrangean relaxation
(Geoffrion , 1974). These approaches allow to find the same dual bound for
a given problem. Nevertheless, solving approximately the Lagrangean dual by
means of a subgradient algorithm allows a faster convergence to the best dual
bound value with no guarantee of optimality. Since the subproblems arising in the
relaxed MORCP requires much more time to be solved with respect to those aris-
ing in the MOOCP, we have applied Lagrangean relaxation to the former problem
and Dantzig-Wolfe decomposition to the latter. Bounds obtained for large scale
MOOCP test instances are at most 3.09% greater than heuristic solution values.
On the other hand, due to the size of the MORCP instances considered, the dual
bounds computed for them do not represent a significant term of comparison for
the corresponding heuristic solution value. Nevertheless, for the smallest MORCP
instances, starting from the approach used to compute dual bounds, we have illus-
trated how quasi-feasible solutions can be obtained to guide the greedy algorithms
in finding better solutions than those presented from scratch. This suggests that
we can successfully apply the same mechanism to the bigger instances by defining
quasi-feasible solutions by means, for example, of sophisticated local search based
heuristics, i.e. tabu search heuristics.

The work of Bianchessi et. al (2005) is the only one presented in the literature
so far concerning the specific problems considered in this thesis. Thus, further
comparisons about the results obtained are not possible.

Finally, focusing on future developments, apart from the main objective func-
tion to be optimized, it may be convenient to take into account secondary objective
functions such as response time, balance in the use of the ground stations, and
others. In such case, an optimization algorithm is not enough; rather a decision
support system is recommendable, allowing for a trade-off analysis among non-
dominated (Pareto-optimal) solutions, according to dynamically adjustable crite-
ria that can vary according to the specific needs or operating conditions of the
moment. Moreover, besides optimizing the operations of a system, in the respect
of technological constraints, Operations Research can also be used to optimize the
management of a system. Revenue management is concerned with the maximiza-
tion of the revenue that can be obtained when selling a product or a service whose
availability has already been established, so that costs are more or less fixed. A
typical example of successful application of revenue management is that of flights
pricing: the same seat on board of the same airplane on the same leg has a cost
that can vary considerably over time, depending on a number of parameters such
as the number of passengers already booked on the same flight, the advance with
which the seat is reserved and many others. This allows airline companies to re-
duce the number of empty seats, that are sold at a very low price, as well as to
exploit at the maximum extent the service provided in highly requested days to
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highly requested destinations. In the case of the problems arising for AEOS, the
negotation with the customers, the definition of a price for each image, the mana-
gement of users’ quotae are very important aspects that need to be empowered
with revenue management tools. This is especially important in consideration of
the very high fixed cost necessary to build and operate a satellite constellation.
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