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Applications

medical research - epidemiology
population dynamics - drug
discovery




Species Molecular Sequence

Macaca (A) AAGCTTCATAGGAGCAACCATTCTAATAATCGCACATGGCCTTACATCATCC

Homo Sap iens ( B) AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGGCTTACATCCTCA

Pan (C) AAGCTTCACCGGCGCAATTATCCTCATAATCGCCCACGGACTTACATCCTCA

Gorilla (D) AAGCTTCACCGGCGCAGTTGTTCTTATAATTGCCCACGGACTTACATCATCA

Pongo (E) AAGCTTCACCGGCGCAACCACCCTCATGATTGCCCATGGACTCACATCCTCC

B

Phylogenies
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The direct use of molecular sequences may lead to under estimation problems.

AAAATCTCTCTCGGTCTCACGG
AAATGTGTGTGC—---CATTTTC
ATTTTCTCTCTC---CTCACGG
CCCTGTGTGTGCGGTCATTTTC
AAAAT----CTCGGTCTCACGG

Hence, some models of molecular evolution have to be taken into account in order to avoid such

problems.

Models of molecular evolution
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The sequence of a gene can be altered in a number of ways. Gene mutations have varying effects on
health depending on where they occur and whether they alter the function of essential proteins.

Structurally, mutations can be classified as:

Small-scale mutations, such those as affecting a small gene in one or a few nucleotides, including:

D Point mutations, Insertions /Deletions

Large-scale mutations in chromosomal structure, including:

Gene duplications

Deletions of large chromosomal regions.

Chromosomal translocations

Chromosomal inversions

| oss of heterozygosity

Models of molecular evolution
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http://en.wikipedia.org/wiki/Point_mutation
http://en.wikipedia.org/wiki/Point_mutation
http://en.wikipedia.org/wiki/Insertion_%28genetics%29
http://en.wikipedia.org/wiki/Insertion_%28genetics%29
http://en.wikipedia.org/wiki/Genetic_deletion
http://en.wikipedia.org/wiki/Genetic_deletion
http://en.wikipedia.org/wiki/Chromosome
http://en.wikipedia.org/wiki/Chromosome
http://en.wikipedia.org/wiki/Gene_duplication
http://en.wikipedia.org/wiki/Gene_duplication
http://en.wikipedia.org/wiki/Genetic_deletion
http://en.wikipedia.org/wiki/Genetic_deletion
http://en.wikipedia.org/wiki/Chromosomal_translocation
http://en.wikipedia.org/wiki/Chromosomal_translocation
http://en.wikipedia.org/wiki/Chromosomal_inversion
http://en.wikipedia.org/wiki/Chromosomal_inversion
http://en.wikipedia.org/wiki/Loss_of_heterozygosity
http://en.wikipedia.org/wiki/Loss_of_heterozygosity

Neutrality hypothesis

Models of molecular evolution
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Conservative Hypothesis

Models of molecular evolution

Daniele Catanzaro
The minimum evolution problem




Superposition principle

Oi(t+dt)=2pi(t)pki(At)

Models of molecular evolution
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& AAATCGGC Neutral Selection

Superposition Principle

CAATCGGT

Conservative Hypothesis

Constant instantaneous
rates

CCATCGGT

CCATCGTT

Models of molecular evolution
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pij(t+dt) =

pij (t + dt)

pij (t + dt)

Neutral Selection

Superposition Principle

Conservative Hypothesis

E pzk; pk:g dt Constant instantaneous

— pij(t) =

—pij(t) _

rates
> pik (ks (dt) + pij ()ps; (dt) — pis (t)
k]
2k P (OPrs (L) oo () Pas(@D) — 1

dt
pij (t + dt)

—pij(t) _

dt

—pij(t) _

dt
Dk Pi()pr;(dt)

dt
Dkt j Pik (t) iz (dt)

dt

Pij(t) = > pik(t)reg = D> raipi (1)
k k
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Models of molecular evolution are quite important. For example they can be used for computing

distances.
AAAATCTCTCTCGGTCTCACGG fea foe fee

AAATGTGTGTGCACACATTTTC fea foc fac

\ Era £rpc¢ frg

PH)=P=II""(P@)'II) =II"'F"({) = II"'F” T
P

(t) = e = Qe

t = —trace[Illog(P)] log(A) = Wlog(A)W

Lanave et al. (1984) presented a general model of DNA sequence evolution.

Tavaré (1986), Barry & Hartigan (1987), Rodriguez et al. (1990) gave a different but numerically and algebraically equivalent formulation.
Gillespie (1986), Zharkikh (1994),VWaddell (1995) noted the time-reversibility (TR) of the Lanave’s model; Swofford and Lewis (1997)
provided a proof.Waddell & Steel (1997) summarized and extended results on the GTR model and, starting from Rodriguez’s
formulation, provided algorithms currently implemented in PAUP*.

Computing distances
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G

UUU (Phe/F)Phenylalanine
UUC (Phe/F)Phenylalanine
UUA (Leu/L)Leucine
UUG (Leu/L)Leucine

UCU (Ser/S)Serine
UCC (Ser/S)Serine
UCA (Ser/S)Serine
UCG (Ser/S)Serine

UAU (Tyr/Y)Tyrosine
UAC (Tyr/Y)Tyrosine
UAA Ochre (Stop)
UAG Amber (Stop)

UGU (Cys/C)Cysteine
UGC (Cys/C)Cysteine
UGA Opal (Stop)

UGG (Trp/W)Tryptophan

CUU (Leu/L)Leucine
CUC (Leu/L)Leucine
CUA (Leu/L)Leucine
CUG (Leu/L)Leucine

CCU (Pro/P)Proline
CCC (Pro/P)Proline
CCA (Pro/P)Proline
CCG (Pro/P)Proline

CAU (His/H)Histidine
CAC (His/H)Histidine
CAA (GIn/Q)Glutamine
CAG (GIn/Q)Glutamine

CGU (Arg/R)Arginine
CGC (Arg/R)Arginine
CGA (Arg/R)Arginine
CGG (Arg/R)Arginine

AUU (lle/l)Isoleucine
AUC (lle/l)Isoleucine
AUA (lle/l)Isoleucine
AUG (Met/M)Methionine, Start !}

ACU (Thr/T)Threonine
ACC (Thr/T)Threonine
ACA (Thr/T)Threonine
ACG (Thr/T)Threonine

AAU (Asn/N)Asparagine
AAC (Asn/N)Asparagine
AAA (Lys/K)Lysine
AAG (Lys/K)Lysine

AGU (Ser/S)Serine
AGC (Ser/S)Serine
AGA (Arg/R)Arginine
AGG (Arg/R)Arginine

GUU (Val/V)Valine
GUC (Val/V)Valine
GUA (Val/V)Valine
GUG (Val/V)Valine

GCU (Ala/A)Alanine
GCC (Ala/A)Alanine
GCA (Ala/A)Alanine
GCG (Ala/A)Alanine

GAU (Asp/D)Aspartic acid
GAC (Asp/D)Aspartic acid
GAA (Glu/E)Glutamic acid
GAG (GIu/E)Glutamic acid

GGU (Gly/G)Glycine
GGC (Gly/G)Glycine
GGA (Gly/G)Glycine
GGG (Gly/G)Glycine

Models of molecular evolution
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Amino acid

Hydrophobic effect

keal-mol] Molecular weight

Dalton| Surface area

Side-chain volume

Alanine
Arginine
Asparagine
Aspartic acid
Cysteine

1.0
1.1
-0.1
-0.1
0.0

Glutamic acid 0.5

Glutamine
Glycine
Histidine
Isoleucine
Leucine
Lysine
Methionine

0.5
0.0
1.3
2.7
2.9
1.9
2.3

Phenylalanine 2.3

Proline
Serine
Threonine
Tryptophan
Tyrosine
Valine

1.9
0.2
1.1
2.9
1.6
2.2

71

156
114
115
103
129
128
a7

137
113
113
128
131
147
97

87

101
186
163
99

115
225
160
150
135
190
180
75

195
175
170
200
185
210
145
115
140
255
230
155

88.6
173.4
114.1
111.1
108.5
138.4
143.8
60.1
153.2
166.7
166.7
168.6
162.9
189.9
112.7
89
116.1
227.8
193.6
140

for synonymous substitutions

for replacement substitutions involving position 1 or 3

for replacement substitutions involving position 2

for replacement substitutions involving positions 1 and 3

for replacement substitutions involving positions (1 and 2) or (2 and 3)
for replacement substitutions involving positions 1, 2, 3

for replacement substitutions to stop codons

- k_ck
aij = rijhije” 2ox @kler ¢

P(t) = P(t)A = AP(t)

Models of molecular evolution
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Cavalli-Sforza and Edwards: A first model of evolution
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Measure of the dissimilarity Error relative to the
between species A and B approximation

- W1 B=0AB+EAR J

- Wo'c=0Ac+EAC
- Wop=0aAD+EAD
WB1'+ W12+ Wo'c=0dsc+ERC

WB1'+ W12'+ W2 p=0BD+ERBD
Wec2'+ Wo'p=0dcp+ecD

Cavalli-Sforza and Edwards: A first model of evolution
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vectorially: Xw=d+e

where
A1’ B1’ 1’2’ 2’C 2’D
0

Hence, Cavalli-Sforza and Edwards
model becomes:

Find the best X s.t.

lel|2 is minimized

Cavalli-Sforza and Edwards: A first model of evolution
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In other words, Cavalli-Sforza and Edwards proposed the use of the Least-Squares (LS) method,

l.e., to find a phylogeny having the lowest distortion from an additive phylogeny.

w=0x50 Txta=xTd

This estimation model is characterized by several drawbacks:
-»- Species generally do not evolve independently from each others.
-»- The rate of evolution may not be the same for each species.

-»- The additive model may provide phylogenies having negative edge weights which is a nonsense.

Drawbacks
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In other words, Cavalli-Sforza and Edwards proposed the use of the Least-Squares (LS) method,

l.e., to find a phylogeny having the lowest distortion from an additive phylogeny.

w=0x50 Txta=xTd

Some authors proposed to

-»- Consider the evolutionary dependencies between species (Weighted Least-Squares (WLS) and
Generalized Least-Squares (GLS)).
-»- Consider models which allow different evolutionary rates (Minimum Evolution models, Maximum

Likelihood (ML) models, Bayesian models (BM)).

-»- Impose the positivity constraint in order to remove negative edge weights (Projective Algorithms

(PA), Minimum Distortion Algorithms (MDA), Balanced Least-Squares (BLS)).

Possible solutions

Daniele Catanzaro
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The minimum evolution problem
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Minimum Evolution Problem Under Linear Programming (MELP)
Given a phylogenetic graph and a distance matrix among species, find a phylogeny whose length is

minimum.

s.t.Xwz2 D
X€Ex

we RSZ™Y

MELP
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Assume the set of species I is lexicographically ordered, and assume without loss of generality that
the rows of the EPT matrix are always ordered lexicographically on the basis of the order in I.
Assume also that the first n columns of X correspond to the external edges of a phylogeny T and

that they are sorted according to the order of the taxa at one of their extremes.
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The EPT model
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Finally, we assume that the remaining (n-3) columns of X, corresponding to the internal edges of T
are sorted according to a relation defined in the following way. Given a generic external edge e,

define dist(e) as the topological distance of e from the leaf associated with taxon A. In addition,

define path(e) the first path, from a lexicographical point of view, to which e belongs. Then, we

impose that the column associated with the internal edge e1 precedes the column associated with
the internal edge e2 in X if one of the following two conditions holds: path(e1) lexicographically
precedes path(e2) or path(e1) = path(e2) and dist(e1) < dist(e2). This order relation is complete as
the lexicographic order is complete in the path set, and in a tree we cannot have path(e1) = path(e2)
and dist(e1) = dist(e2).
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Given this order, any EPT matrix of a phylogeny can be decomposed in blocks:

AB
AC
AD
AE
BC
BD
BE
CD
CE
DE

It is easily seen that only the red block (hereafter indicated as F) is necessary to describe a
phylogeny. In fact the bleu and the green blocks can be obtained as xor of the relative yellow and red

blocks.

The EPT model
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In order to represent a phylogeny the entries of matrix F must obey to the following theorem:

Theorem 2.1. F is feasible if and only if all the following conditions hold on its entries:

1. It does not include any of the following 2 x 2 submatrices

M, = ((1) i) (2.7)

M, = (‘1’ i) (2.8)

where the columns and the rows whose intersection defines M; and M, are not necessarily adjacent in
F.

2. Any of its column has at least two entries equal to 1.

3. If columns r and s, with r < s, have an entry equal to 1 in the same row then the number of entries equal
to 1 in column r is larger than the number of entries equal to 1 in s.

The EPT model
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The xor conditions can be expressed as follows:

Tije < T Aie + T Aje
Tij.e < 2 - TAie — TAje
Tij.e = TAie — TAje

Tije 2 —Tpiet Taje

The first condition of Theorem 1 can be expressed as follows:

TAif +TAjf+ Thaie— TAje <2
TAif +TAjf— TAie+ Taje < 2.

The second condition of Theorem 1 can be expressed as follows:

The third condition of Theorem 1 can be expressed as follows:

Z xAi,eSn—z

ieVe\A

Y Tais < ). Taig— 1+ (n—1)(2— Tajr — Tajs)
icV.\A eV, \A

The EPT model
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XOR constraints Anti-cycle constraints
min z = E w e TAie T TAje TAi,f + TAjf + TAi,e — TAje
- €
2= Tpie —TAje  Tpp+Tajf—Taie+ Taje
TAie — xAj,e

- - : —Z Aie T TAje-
linearizing constraints Aie T S Aje

Vije < dijTije Degree constraints

Biological constraints . 1+ (n-1)(2-2z —Tais)
i E Ai,r Ajr Aj.s
E Vije = dz’j ; icV,\A

e

The EPT model
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Measure of the dissimilarity Error relative to the
between species A and B approximation

-eABJ

- Wwe=dac+eac
- Wawv+ WyvD=0aD+EAD
- Wrw+ W+ WyE=OAE+EAE

- Wur+ Wrw+ Wwec=0Bc+EBC

A different version of MEP: BME
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Ordinary Least
Squares (OLYS)
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A minimal length phylogeny provides a lower bound on the overall amount of mutation events

occurred along evolution of the set of species analyzed.

The balanced minimum evolution criterion is a variation of ME in which the length of a phylogeny is

computed as:
dij

i=1j=1

Fundamentals of the balanced minimum evolution criterion

Daniele Catanzaro
The minimum evolution problem




The phylogeny length under BME is equivalent to the average of the circular orders associated to a

given phylogeny.

sum of the edge weight
belonging to the path from leaves xi 10O Xi+1

Combinatorial interpretation of BME
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The problem of finding a phylogeny which satisfies the balanced minimum evolution criterion is
known as Balanced Minimum Evolution Problem (BME) and consists of minimizing the function
n n 4..
ij
L= Z Z Tij
i=1j=1 2
with the constraint that {Tij} form a phylogeny.

BME is in P if

dzi + dr; < max{d,; + dik,dk, + di; }

d;; < max{d;k, dk;}

However in the most general case the complexity of BME is unknown.

The Balanced Minimum Evolution Problem (BME)
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Approaches to solution: Heuristics
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Approximate algorithm for MEP
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Ant philosophy
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The total number of possible trees with n leaves is (2n-3)!!
i The number of non-isomorphic shapes increases more slowly!
: A possible strategy to solve the optimization problem could be:

i () to enumerate all the possible non-isomorphic shapes (P#
: problem); (i) to find an optimal assignment for each non-

|somorph|C shape (NP-hard problem).

Leaves NI-Shapes Shapes
3 1 3

15

105

945

10395

135135

9

2027025

10

34459425

15

1012

20

1021

30

14502229 1038

40

11077270355 1057

Non—|somorphlc generation
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It is possible to change the assignment of
k leaves on the tree by simply swapping
the k corresponding rows of X.

The k-OPT local search is therefore easy
and fast.

Contra: it seems not possible to get an a-
priori cost of each swap; consequently
each swap requires a complete evaluation
of the entire tree (heavy).
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Species assingment
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Best-so-far tree Pheromone update

Pheromone Matrix

t; = pheromone
trail parameter
reinforcement for taxon i vs.j Ant #1

- = = evaporation A c

2-OPT local search

Ant algorithm




Ll
QTij + (1 — a)n”
© o Dij =
Y< ’ ZQGF\ng aqu -+ (1 —_— O{)T]qJ
L J

€7 = { kp/lg ., if w; is adjacent to w; in solution gbest.
ij —

0, otherwise.
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The likelihood criterion states that under many plausible explanations of an observed phenomenon,
the one with the highest probability of occurring should be preferred. Hence, under the likelihood

criterion, a phylogeny is defined to be optimal (or the most likely) if it has the highest probability of

explaining the observed taxa.

The likelihood criterion of phylogenetic estimation

Daniele Catanzaro
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The likelihood criterion is introduced by Joe Felsenstein in 1981, as an attempt at solving some
“distortion” problems of Cavalli-Sforza and Edwards model. In fact, it is possible to prove that in
presence of high mutation rates (evidenced e.g., by a high divergence of the molecular sequences)
or convergent/divergent evolution, Cavalli-Sforza and Edwards model leads to edge weights having

values quite different from the true phylogeny. This phenomenon is known as “long branch

attraction”.

The likelihood criterion of phylogenetic estimation

Daniele Catanzaro
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Rooted phylogenies

Daniele Catanzaro
A few notes in molecular phylogenetic estimation




Rooted phylogenies
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s (§) = [ 2 child; (i) P; (tl)] [ Z child, (i) Pij (t2)

i={a,c,G,T} i={A,C,G,T}

‘ {A,C,G,T}
- {?,72,72,7}

Likelihood score of a phylogeny
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4
L= Zs (7) frequency (j)
j=1

{0.1,0.2,0.4,0.4)

Likelihood score of a phylogeny
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S (J) frequency (j)

{{0.1,0.2,0.4,0.4}, {0.3,0.12,0.2,0.1}, {0.5,0.1,0,0.1}}

Likelihood score of a phylogeny
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maximizeL (T, t, P)
T,t,P

The estimation problem
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In the literature...
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Very Large-Scale Neighborhood (VLSN) techniques
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cijk = ISk — Sjll + 1Sk — Sl

Ciik = L(Sk|Si, S, Wi, wi;)

VLSN technigues for phylogeny estimation
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level 2

level 3

level 2

Minimum Cost Assignment Neighborhood
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level 1

level 3

level 4

Minimum Cost Cycle Neighborhood
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The algorithm

Estimating phylogenies under maximum likelihood: A

very large-scale neighborhood approach
D. Catanzaro, R. Pesenti, and M. C. Milinkovitch - Université Libre de Bruxelles

Generate a starting phylogeny
and the associated likelihood parametes

Run MCAN

Run Vertex Swap

Run Likelihood Parameters
Optimization until L
improves

'

Return the best-so-far phylogeny
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(MPaup implementation.

Instance: Rana64/1976

Numerical results
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(MPaup implementation.

Instance: Zilla300/1428

Numerical results
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FigTree v1.0

Optimal rates

PrMoCo(o 1.0 beta
[ ==
Data from: Node Clade Taxa | Select Scroll

Hayasaka, K., T. Gojobori, and S. Horal. 1988. Selection Mode Drag mode

e
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Molecular phylogeny
and evolution of primate mitochondrial DNA.

Mol. Biol. Evol.
55626-644.

Reading "DATA" block...

Generating starting free...starting value: -17891.2
Maximizing likelihood, please wait...

Convergency reached!

Executing final edge-weight optimization...Completed!
Best value found: -14129
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Phylogenetic estimation is one of the most important problem in computational biology. It is a

flourishing area of interaction between molecular biology, operations research, computer science,

and physics.

The day by day growing amount of molecular data stored in public databases forces to search for:

-»- Ad hoc models of molecular evolution
-®- Ad hoc models of phylogenetic estimation

-»- Optimization algorithms to select phylogenies among possible alternatives

Here we have presented a first introduction to phylogenetics. The most relevant issues used in

tackling real-world sized problems have been outlined, as have the most interesting refinements

deserving further research effort.

Conclusion
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Reconstructing

NEW MATHEMATICAL AND COMPUTAJRE

Phylogenetics
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