
Università degli Studi di Milano

Facoltà di Scienze Matematiche, Fisiche e Naturali

Dipartimento di Tecnologie dell’Informazione

Dottorato di Ricerca in Informatica, XVIII Ciclo

Settore scientifico/disciplinare INF-01

Ph.D. Thesis:

Branch-and-price algorithms for
partitioning problems

Candidate: Alberto Ceselli

Tutor: Prof. Giovanni Righini

Coordinator: Prof. Giovanni Degli Antoni

A.A. 2004/2005 - November 2005

Acknowledgments

I firstly wish to thank my supervisor Giovanni Righini: in the last years he was
consistently supporting and encouraging my research, always keeping me ‘on the
right track’.

Thanks to my colleagues Matteo, Nicola, Sandro and Luca, who shared with
me good and bad times at the OptLab in Crema, and Andrea, who chose a differ-
ent way.

I will always feel in debt to Annarita Bolzoni, who first seeded my interest in
mathematics and computer science.

I thank, Sandro Fornili and Emanuele Angeleri, because during each discus-
sion with them I catched glimpses of Science in the broad sense. A thank to the
members of the Security Lab Group at the DTI, for the healthy collaboration on
the minor research topic of my PhD.

I will always bear in mind the scientific and human example of Nelson Mac-
ulan. I am grateful to Rolf Möhring and the faculty of the Marie Curie training
site in Berlin for welcoming me and giving me full support in completing my PhD,
to Marco Lübbecke for the insightful discussions on many topics related to this
thesis, and to the staff of the COGA group at the Technische Universität, for the
(not only scientific) great time spent in Berlin. I wish to thank Pasquale Avella
who readily agreed to review this thesis.

Federica, my parents and my brothers silently carried out all my moods in
these years: without their support I would never have completed this work.

Finally, I wish to thank my ‘friends in music’ from the Made in Mind band and
the Terzo Suono vocal group, for reminding me that there is still a world outside.

My PhD scholarship has been granted by the Italian MIUR (Ministero dell’Istruzione,
dell’Università e della Ricerca); I also acknowledge the kind support of ACSU (As-
sociazione Cremasca Studi Universitari) to the OptLab.

Contents

Preface iv

1 Theoretical background 1
1.1 Partitioning Problems . 1
1.2 Formulations and bounds . 2

1.2.1 The linear programming (LP) relaxation 3
1.2.2 The Lagrangean relaxation 4
1.2.3 Dantzig-Wolfe decomposition 6

I Packing Problems 11

2 An optimization algorithm for a penalized knapsack problem 15
2.1 Introduction . 15
2.2 Formulation . 16
2.3 An algorithm for the PKP . 17
2.4 Experimental analysis . 23
2.5 Concluding remarks . 26

3 A branch-and-price algorithm for the two-dimensional level strip
packing problem 31
3.1 Introduction . 31
3.2 Problem formulation . 32

3.2.1 A set covering reformulation 33
3.2.2 The pricing problem . 35

3.3 Branch-and-price . 36
3.4 Computational results . 39

4 An optimization algorithm for the ordered open-end bin packing
problem 43
4.1 Introduction . 43

ii CONTENTS

4.2 Problem formulation . 44
4.2.1 A set covering reformulation 45
4.2.2 A combinatorial lower bound 47

4.3 The pricing problem . 48
4.4 A pricing algorithm . 50
4.5 Branch-and-price . 53
4.6 Computational results . 59

II Assignment Problems 65

5 A branch-and-price algorithm for the multilevel generalized as-
signment problem 69
5.1 Introduction . 69
5.2 Formulations . 71
5.3 A branch-and-price algorithm . 74

5.3.1 Lower bound and termination 74
5.3.2 Branching strategy . 75
5.3.3 Column generation . 76
5.3.4 Primal bounds . 78

5.4 Experimental analysis . 79
5.4.1 Test Instances . 79
5.4.2 Parameters tuning . 81
5.4.3 Computational results . 81
5.4.4 Benchmark algorithms . 84
5.4.5 Conclusions . 86

III Location Problems 95

6 A branch-and-price algorithm for the capacitated p-median prob-
lem 99
6.1 Introduction . 99
6.2 Formulations . 101

6.2.1 Dantzig-Wolfe decomposition 101
6.2.2 The pricing problem . 104
6.2.3 Lagrangean relaxation . 105
6.2.4 Benchmark instances and lower bound comparison 105

6.3 A branch-and-price algorithm . 107
6.3.1 Branching . 107
6.3.2 Primal bound . 109

iii

6.3.3 Columns management . 110

6.3.4 Lower bound and termination 111

6.3.5 Pricing algorithm . 113

6.3.6 Experimental results . 114

6.4 Benchmarks and experimental comparisons 120

6.4.1 Benchmark algorithms . 120

6.4.2 Algorithms comparison . 121

6.4.3 The algorithm of Baldacci, Hadjicostantinou, Maniezzo and
Mingozzi . 122

6.4.4 Concluding remarks . 124

7 A computational evaluation of a general branch-and-price frame-
work for capacitated network location problems 131

7.1 Introduction . 131

7.2 Single-source capacitated location problems 132

7.2.1 Fixed set-up costs . 133

7.2.2 Concentrators . 135

7.2.3 Cardinality constraints . 135

7.2.4 Regional Constraints . 137

7.2.5 Set partitioning formulation 137

7.3 A branch-and-price algorithm . 139

7.3.1 Column generation . 139

7.3.2 Branching scheme . 140

7.3.3 Columns management . 141

7.3.4 Lagrangean bound . 142

7.3.5 Variable fixing . 144

7.3.6 Primal heuristics . 145

7.4 Branch-and-cut . 146

7.5 Computational analysis . 148

7.5.1 Cardinality constraints and fixed costs 148

7.5.2 Regional constraints and concentrators 150

7.5.3 Lower bounds and gaps on large-size instances 154

7.6 Conclusions . 154

8 A final note 169

8.1 Using dual information for bounding and variable fixing 169

8.2 Using the fractional solutions for branching and heuristics 172

8.2.1 Branching rules . 172

8.2.2 Finding feasible solutions . 173

8.3 Research directions . 174

iv Preface

Preface

The need of understanding, modelling and controlling complex phenomena is be-
coming tighter and tighter in modern organized structures. A planner has often
to make critical choices, involving large amounts of resource such as capitals: it is
easy to imagine logistic or financial scenarios, in which managers have to provide
long term investment plannings, design distribution systems for goods or ensure
continuity in a supply chain.

Strategic planning is even more critical in location-allocation problems, in
which the decision maker has to plan the distribution of facilities in a region.
A typical example is the location of network servers, DSL concentrators or WLAN
access points ensuring connectivity to telecommunication networks: in public con-
text, where the target of the supplied service is often people, the possibility of
providing a fair, quick and cheap access to resources, ensuring the optimality of
the given planning, has an economic as well as a social and a political value. Fur-
thermore, these considerations neglect extreme circumstances, like the location of
emergency services or the design of protection systems for military targets. When
such threats must be taken into account, each decision must be supported with
quantitative and objective measures.

In all these situations, the simple experience is not sufficient to guarantee a deep
understanding of the scenario and a conscious choice. This is why the support of
special purpose information systems is needed. The development of such systems
should consider two aspects, often antithetical: flexibility and efficiency.

Flexibility refers to the modeling aspect of the problem: a decision maker
has to master powerful instruments for describing in an effective, quick and (first
of all) rigorous way the observed system. He needs versatile tools, that could
make easy to create, to correct and to consider variations of the built model.
Mathematical programming, and in particular integer linear programming, gives
the most appropriate theoretical background for realizing this kind of instruments.

On the other hand, efficiency refers to the algorithmic issues. In fact, in the
general case, many kind of problems like the ones described before are shown to
be “difficult” from a theoretical point of view. Nevertheless, theoretic complexity
should not be a stumbling block for designing and implementing effective algo-
rithms for solving these problems. The techniques devised in the combinatorial
optimization scientific community perfectly integrate in this context.

The aim of this thesis is to move a step towards the achievement of a computa-
tional framework that combines flexibility with efficiency. We focus on the solution
of partitioning problems. Our approach is the following: we consider mathematical
models widely addressed in the literature, or generalizations of them, and we try to
provide an effective algorithm for each of them, that is based on branch-and-price.

v

In fact, branch-and-price is an emerging method for solving hard combinatorial
problems, which is based on implicit enumeration and column generation tech-
niques.

The first contribution is therefore methodological: both applied mathematics
and computer science are involved in the design of effective algorithmic techniques
for this class of problems. The second contribution is application-oriented, since
the tools obtained by implementing our methods are used for extensive experimen-
tations on partitioning models. This yields an insight into the single problems as
well as the possibility of comparing different models with similar tools.

The first chapter of the thesis introduces the whole work, addressing the class
of partitioning problems and presenting the main theoretical background. It is not
meant to be a comprehensive review of the argument, but rather a brief survey
to focus the main topics of our research. Each of the subsequent chapters is a
self-contained contribution.

In Chapters 3 and 4 we describe branch-and-price algorithms for two packing
problems: the first one is a two-dimensional level strip packing problem and the
second one is the ordered open-end bin packing problem. Both of them can be
considered partitioning problems in which no cost is associated to the insertion of
each element in a class; instead a fixed cost is associated to the activation of a
class. We devote the whole Chapter 2 to describe our approach to the so-called
penalized knapsack problem, that appears as a subproblem in these algorithms. In
fact, our technique for the penalized knapsack problem showed to be a key issue
in the design of effective procedures for this kind of packing problems.

Chapter 5 describes a branch-and-price algorithm for an extension of the gener-
alized assignment problem, arising in production planning. This can be considered
a representative of a problem of partitioning a set in a fixed number of classes,
trying to minimize the average cost for inserting an element in a class.

In Chapters 6 and 7 we present a class of branch-and-price algorithms for single-
source location problems, which combines characteristics of both assignment and
packing problems. We start by describing our solution approach to the capaci-
tated p-median problem. Then we extend it, devising a general purpose solver
for location problems based on branch-and-price. Finally, this tool is used in an
experimental comparison of several facility location models. Besides its aforemen-
tioned modelling and application-oriented contribution, this evaluation gives a final
assessment of the effectiveness and flexibility of branch-and-price algorithms.

In Chapter 8 we briefly draw some conclusions and highlight further research
directions.

Chapter 2 is based on the paper [19], earlier versions of the work in Chapters 3

vi Preface

and 4 were presented as [13] and [20] respectively, Chapter 6 contains the results
published in [18], Chapters 5 and 7 appeared as technical reports [17] and [16] and
are now submitted for publication.

Chapter 1

Theoretical background

In this chapter we briefly review the main mathematical tools used in the thesis.
Since the main contribution of this work is given by the single applications, we felt
that an homogeneous treatment of the subject lays outside our scope. Therefore,
we refer to [100] and to the recent works of [27] and [26] for a detailed treatment
of the subject. Indeed, in the aim of making the thesis self-contained, we tried to
include in this chapter the theoretical notions used in the thesis.

1.1 Partitioning Problems

In a partitioning problem a set I of N elements must be assigned to a set J of M
classes. This definition leads to a wide area of problems, ranging from statistical
data clustering to network engineering and logistics. In this thesis we consider
optimization problems, in which each class has a cost that depends on the elements
composing the class, and the feasible classes can be described in terms of linear
constraints.

Although these may seem very strong restrictions, several well-known models
fall in this area, that are widely used as prototypes in real-world applications. The
most famous one is probably the Generalized Assignment Problem (GAP) (Figure
1.1(a)). A set of agents must perform a set of tasks. Each agent has a finite
amount of resource; in the minimization form of the problem, accomplishing each
task implies time and resource consumption. The problem consists in finding the
assignment of tasks to agents, in such a way that each agent has enough resources
to complete its tasks and the total computing time is minimized. In this case,
the assignment of tasks to agents is equivalent to partitioning the set of tasks in
classes, one for each agent, and a single linear constraint suffices to impose that
the resource requirement of the tasks in the same class do not exceed the resource
available to the agent. In Chapter 5 we propose an algorithm for solving an

2 – Ch. 1 Theoretical background

(a) (b) (c)

Figure 1.1: Partitioning problems: assignment (a), packing (b) and location (c)

extension of the GAP, in which each agent can perform tasks at different efficiency
levels, trading resource consumption for time.

Partitioning is a powerful modeling tool also in logistics: in Chapters 3 and 4
we consider two variations of the strip packing and bin packing problem respec-
tively (Figure 1.1(b)). In this case, a set of objects must be placed into containers.
Clearly, the set of objects in each container forms a class of the partition. Geo-
metric characteristics of both objects and containers, such as height and/or width,
restrict the ways in which each class can be formed. The cost of the partition is
given, in this case, by either the number of classes or a fixed cost for not leaving
a class empty.

A third and wider case of study in this thesis is the class of single source
location problems (Figure 1.1(c)): a set of customers, described by their position
in a distribution network, has to be partitioned into clusters, and a facility must be
activated in each of these clusters. In order to model real situations, often demands
for customers and capacities for facilities must be considered. We studied location
problems in which the demand of a customer has to be satisfied by exactly one
facility. In Chapter 6 we present our algorithm for the Capacitated P-Median
Problem (CPMP), while in Chapter 7 we tackle the problem of designing and
implementing a tool for computer-aided location analysis.

1.2 Formulations and bounds

All the problems described above have already been addressed in the literature.
Mathematical programming, and especially integer linear programming, showed to
be the most appropriate modeling tool for this kind of problems. In particular, all
of them admit a compact formulation, that is a formulation involving a polynomial

Formulations and bounds 3

number of both variables and constraints. This is of the following form:

SPP) min v =
∑

j∈J

cj(xj)

s.t.
∑

j∈J

xj = 1 (1.1)

Ajxj ≥ bj ∀j ∈ J (1.2)

xj ∈ {0, 1}N ∀j ∈ J (1.3)

Each class j in the partition is described by a binary vector xj; each component
xj

i is 1 if element i belongs to class j, 0 otherwise. Constraints (1.1) are referred as
partitioning constraints. Together with integrality conditions (1.3), they enforce
that each element belongs to exactly one class, while each block j of constraints
(1.2) describes how each class can be composed in a feasible partition. The cost for
creating each class j is a function cj() of the elements in the class. The objective
is to minimize the average cost of the classes in the partition.

The complexity of partitioning problems depends on the structure of the con-
straint matrix for each class (Ajxj ≥ bj), but in the general case, as for the
problems introduced in the previous section, partitioning problems are NP-hard
[41]. Hence, resorting to implicit enumeration algorithms to obtain a proven op-
timal solution is legitimate; this implies that a great effort has to be spent in the
engineering of an effective method, also from an experimental point of view.

A first building block for these frameworks is a good estimate of the optimal
solution. This is obtained by relaxations of the problem. The value of these
relaxations is often called dual bound, since it is a feasible solution for a dual
problem.

1.2.1 The linear programming (LP) relaxation

As long as the cj() functions are linear, or can be linearized, a valid dual bound
can be obtained by relaxing the integrality conditions (1.3) and solving the corre-
sponding LP.

L-SPP) min v =
∑

j∈J

cj(xj)

s.t.
∑

j∈J

xj = 1 (1.4)

Ajxj ≥ bj ∀j ∈ J (1.5)

0 ≤ xj ≤ 1 ∀j ∈ J (1.6)

4 – Ch. 1 Theoretical background

=1

X
1

X
2

X
3

X
N

X
1

X
2

X
3

X
N

+ + +

...

...

...

+

Figure 1.2: Structure of the constraint matrix in a partitioning problem

If the polyhedron associated to the whole formulation does not coincide with the
convex hull of its integral points, the optimal solution of L-SPP may be fractional.
Therefore, this LP bound is commonly strengthened by adding valid inequalities
to the initial formulation [83], with the aim of approximating the convex hull. In
many cases, this intent is pursued by considering only a subset of constraints, and
describing the convex hull of the corresponding space. The set of constraints (1.2)
is often a good candidate for deriving tight inequalities.

In branch-and-cut algorithms the generation of valid inequalities is dynam-
ically performed in order to cut off fractional solutions, and coupled with the
exploration of a search tree. Nowadays, branch-and-cut is a very well understood
technique, which is implemented in several general-purpose optimization packages
like CPLEX [1], X-Press [101] and GLPK [57]. It is effective in solving a wide
range of mixed integer programs.

1.2.2 The Lagrangean relaxation

An alternative way of tackling the problem is that of decomposition. As depicted
in figure 1.2, the constraint matrix of a partitioning problem has a particular
structure: neglecting the block of partitioning constraints, this is a block diagonal
matrix. Therefore, by dropping constraints (1.1) the problem decomposes into M
independent (and smaller) subproblems. A better way of exploiting this property is
to use Lagrangean relaxation [76], in which the violation of the relaxed constraints
is penalized with suitable terms in the objective function:

min v(λ) =
∑

j∈J

cj(xj) − λ(
∑

j∈J

xj − 1)

Ajxj ≥ bj ∀j ∈ J (1.7)

xj ∈ {0, 1}N ∀j ∈ J (1.8)

Formulations and bounds 5

(a) (b)Figure 1.3: Convexification of two set of constraints

As described, the problem decomposes into M independent subproblems, each of
the form:

min vj(λ) = cj(xj) − λxj

Ajxj ≥ bj

xj ∈ {0, 1}N

The elements of the vector λ are usually indicated as Lagrangean Multipliers.
For any choice of λ, the value obtained by adding the optimal solution values of
all these subproblems is a valid dual bound for SPP; the problem of finding the
vector λ which gives the tightest bound is called the Lagrangean Dual problem.
Let each Ωj = {xj|Ajxj ≥ bj, 0 ≤ xj ≤ 1} be the region described by each block j
of constraints (1.7) and (1.8). The following central result assesses the quality of
the Lagrangean bound [42] [76]:

Proposition 1 The bound obtained by solving the Lagrangean Dual to optimality
is the same obtained by solving the LP relaxation of SPP, in which the M regions
described by constraints Ajxj ≥ bj are substituted by their convex hulls (Figure
1.3).

Therefore, if the vertices of the polyhedra Ωj can have fractional coordinates,
they are said not to have the integrality property, and the bound obtained in this
way dominates the bound obtained by the LP relaxation; of course, for a particular
(suboptimal) choice of the λ vector this relation may not be true.

Several methods have been devised to either solve the Lagrangean Dual to
optimality, or approximating it. In the first class fall the bundle-like and analytic

6 – Ch. 1 Theoretical background

center methods [37]. They share a feature with column-generating algorithms:
they iteratively solve a set of subproblems, in order to obtain a feasible relaxation,
and a master problem, in order to update the multipliers vector. Their convergence
properties are related to the complexity of the master problem. The subgradient-
like algorithms fall in the second class of methods: they try to find a good vector of
multipliers, trading accuracy and guarantees with speed. To this category belong
also recent techniques like the Volume Algorithm [7] [4], in which the master
problem of the bundle methods is treated in an aggregated form.

1.2.3 Dantzig-Wolfe decomposition

The approach of Dantzig and Wolfe yields the same result through a different way.
First, consider the LP relaxation of SPP in the following form:

min v =
∑

j∈J

cj(xj)

s.t.
∑

j∈J

xj = 1

xj ∈ Ωj ∀j ∈ J

The starting point for the Dantzig-Wolfe method is the following theorem [76]:

Theorem: Each point in Ωj can be expressed as a convex combination of the
extreme vertices x̄j

k, k ∈ Kj and a linear combination of extreme rays r̄j
l , l ∈ Lj of

Ωj.

That is, for each xj ∈ Ωj,

xj =
∑

k∈Kj

x̄j
kz

j
k +

∑

l∈Lj

r̄j
l h

j
l

with
∑

k∈Kj z
j
k = 1.

Furthermore, if the Ωj polyhedra are bounded, each point can be described in
terms of extreme vertices only. Since this is always our case, in the subsequent
paragraphs we drop the indication about extreme rays.

The original formulation of SPP can be rewritten in the following form, called

Formulations and bounds 7

master problem (MP):

min v =
∑

j∈J

cj(
∑

k∈Kj

x̄j
kz

j
k)

s.t.
∑

j∈J

(
∑

k∈Kj

x̄j
kz

j
k) = 1

∑

k∈Kj

zj
k = 1

This new model has a variable for each extreme point of the Ωj polyhedra. Their
number can grow exponentially in the dimensions of the problem. However, this
gives the following advantage: each polyhedron Ωj can be replaced by its convex
hull conv(Ωj), by simply replacing the set {x̄j

k, k ∈ Kj} of extreme points of Ωj

with the set {x̄j
k, k ∈ K̄j} of the extreme points of conv(Ωj).

min v =
∑

j∈J

cj(
∑

k∈K̄j

x̄j
kz

j
k)

s.t.
∑

j∈J

(
∑

k∈K̄j

x̄j
kz

j
k) = 1 (1.9)

∑

k∈K̄j

zj
k = 1 (1.10)

Theoretically, the bound found by solving this LP and the one obtained by
solving the Lagrangean Dual Problem to optimality are the same. However, this
relaxation cannot be computed directly, since the number of variables involved in
the optimization is too large. Therefore, practical implementations of this tech-
nique use column generation methods [43].

This technique generalizes the simplex method in the following way: as in
the simplex algorithm, the first step is to find a feasible basis, that is a subset
of as many variables as the number of constraints in the LP. The value of the
variables outside the basis is fixed to 0, and the remaining problem is basically
a linear system of equations, and can be solved efficiently. This yields an initial
primal and a corresponding dual solution. Then, the simplex algorithm tries to
improve the selected basis. This is done by looking at the reduced cost of the non-
basic variables. If no non-basic variable has negative reduced cost (for the case of
minimization problems), the current basis, and therefore the current solution, is
optimal. Otherwise, a non-basic variable with negative reduced cost is included
into the basis, a basic variable is excluded correspondingly, and the pricing process
is iterated. From a geometric point of view, this corresponds to iteratively moving

8 – Ch. 1 Theoretical background

from an extreme vertex of the polyhedron associated to the LP to an adjacent
extreme vertex, following the direction of the objective function.

As long as the value of a variable is fixed to 0, there is no need of storing the
corresponding column. Hence, the column generation process starts by considering
a restricted MP (RMP), containing a tractable subset of columns, that satisfies the
only condition of containing a feasible basis. This RMP is optimized, obtaining
a primal and a dual solution. Then, the pricing step is modified: instead of
computing explicitly the reduced cost of each non-basic variable, an optimization
problem is solved, whose aim is to find the variable with the lowest reduced cost.
If the reduced cost of this variable is non-negative, the current basis is optimal,
and therefore the solution of the RMP is optimal also for MP. Otherwise, the
column corresponding to the new variable is inserted into the RMP, the problem
is re-optimized and the pricing process is iterated. It is easy to notice that any
such variable cannot not be in the RMP, since it would be included into the basis
during the RMP optimization. From a geometric point of view, this corresponds
in moving to the vertex associated to the optimal RMP solution with simplex
iterations, that is the farthest known vertex of the polyhedron associated to MP,
and to generate the nearest vertices by need (see Figure 8.1).

Let λ and µ be the vectors of dual variables associated to constraints (1.9) and
(1.10) respectively. In our case, using a standard pricing rule, the reduced cost of
any variable zj

k is:

rc(zj
k) = cj(x̄j

k) − λx̄j
k − µj

and therefore, the problem of finding the vertex x̄j
k corresponding to the variable

with the lowest reduced cost is:

min rc(zj
k) = cj(x̄j

k) − λx̄j
k − µj (1.11)

s.t. Ajx̄j
k ≥ bj (1.12)

x̄j
k ∈ {0, 1}N . (1.13)

Neglecting the µj term, that is not involved in the optimization process, these are
the same subproblems as in the Lagrangean relaxation.

Therefore, Dantzig-Wolfe decomposition with this column generation scheme
can be viewed as a finite method for solving the Lagrangean Dual problem to
optimality, as well as obtaining the corresponding primal solution. The optimality
and finiteness of this method come at the price of explicitly storing (a subset of) the
solutions of each Lagrangean relaxed problem. We remind that, in subgradient-
like algorithms, the knowledge about past solutions is only approximated, and so
it is the quality of primal and dual solutions.

On the other hand, the equivalence with Lagrangean relaxation can be used
to improve column generation algorithms. In fact, the optimal value of the RMP

Formulations and bounds 9

relaxation is a valid dual bound for SPP only at the end of the column generation
process (once optimality for MP is proved), while the value of the Lagrangean
relaxation provides a valid dual bound at each column generation iteration.

The recurrent idea in the following chapters is to combine the good character-
istics of these two methods in a unique framework.

10 – Ch. 1 Theoretical background

Part I

Packing Problems

We start by considering packing problems. In this kind of partitioning problems,
a set of items must be organized in bins. There are no allocation costs, but only
fixed costs for activating a bin.

First, in Chapter 2 we study a penalized knapsack problem (PKP). This is a
variation of the binary knapsack problem, arising as a subproblem in the subsequent
algorithms. The main peculiarity of this variation is that the items are ordered,
and a penalty term is associated to the last selected item. This structure occurs in
several well-known models, as well as in real applications. Although directly solving
this problem with knapsack problem codes is impractical, we show how to exploit
the vast knowledge on the topic to devise effective solution strategies.

Then our algorithm is used as a pricing routine in a column generation algo-
rithm for the two-dimensional level strip packing problem, discussed in Chapter
3. Besides assessing the overall effectiveness of branch-and-price against a gen-
eral purpose solver for this kind of packing problems, we verified that actually our
pricing technique makes the difference in designing effective methods.

Finally, in Chapter 4, we consider the ordered open-end bin-packing problem,
which was previously tackled only from an approximation point of view [103].
Again, we tried to solve the problem with branch-and-price, and we exploited the
special ordered structure of the items to devise efficient methods for the pricing rou-
tine. We also show how to embed information drawn from combinatorial properties
of the problem in a branch-and-price framework.

14 – Ch. 1

Chapter 2

An optimization algorithm for a
penalized knapsack problem

We study a penalized knapsack problem, that is a variation of the 0-1 knapsack
problem, in which each item has a profit, a weight and a penalty. A subset of
items has to be selected such that the sum of their weights does not exceed a given
capacity and the objective function to be maximized is the sum of the profits of
the selected items minus the largest penalty associated with the selected items.
We present an integer linear programming formulation and we describe an exact
optimization algorithm. The experimental analysis on a testbed of more than 3000
randomly generated instances of different size with different types of correlation
between profits, weights and penalties shows that our algorithm is two orders of
magnitude faster than a state-of-the-art general purpose solver.

2.1 Introduction

Penalized knapsack problems are variations of the 0-1 knapsack problem, in which a
subset of items must be selected such that the sum of their weights does not exceed
a given capacity and the overall value of the objective function to be maximized is
given by the sum of the profits associated with the selected items minus a penalty
term. An example of a penalized knapsack problem, in which the penalty is a
function of the total capacity used has been presented in [38]. We study a penalized
knapsack problem in which each item has a profit, a weight and a penalty. The
objective function to be maximized is the sum of the profits of the selected items
minus a penalty, which is the maximum among the penalties associated with the
selected items.

Our motivation is similar to that of Freling et al. [38], since it is related to
the pricing problem arising in a branch-and-price approach to solve the set cov-

16 – Ch. 2 An optimization algorithm for a penalized knapsack problem

ering reformulation of a difficult integer linear problem. In particular our penal-
ized knapsack problem (PKP in the remainder) arises as a pricing subproblem in
branch-and-price algorithms for the two-dimensional level strip packing problem
(2LSPP) [67]. The 2LSPP consists of packing a set of rectangular items of given
width and height into a strip of given width and variable height divided into levels,
subject to the constraint that the items inserted in each level cannot be put on
top of one another; hence the height of each level depends on the maximum height
of the items inserted in it. The objective is to minimize the overall height of the
strip. When the 2LSPP is reformulated as a set covering problem in which each
column corresponds to a feasible subset of items inserted into the same level, the
pricing subproblem is a PKP, in which the weight of each item is its width, the
profit is the corresponding dual multiplier and the penalty is its height. This raises
the need of fast optimization algorithms for the PKP.

In spite of the vast scientific literature on the 0-1 knapsack problem (see for
instance [74] and [72]), we are not aware of any previous attempt to formulate
and solve this PKP, either from the viewpoint of exact optimization or from that
of heuristic approximation. In this paper we present an algorithm to solve the
problem to proven optimality. We also analyze the effect of different degrees of
correlation between weights, profits and penalties.

2.2 Formulation

A set M of N items is given; each item j ∈ M has a weight aj, a profit cj and a
penalty pj. A given capacity b is available. A mixed-integer linear programming
formulation for the PKP is the following.

max z =
∑

j∈M

cjxj − η (2.1)

s.t.
∑

j∈M

ajxj ≤ b (2.2)

pjxj − η ≤ 0 ∀j ∈ M (2.3)

xj ∈ {0, 1} ∀j ∈ M

Each binary variable xj takes value 1 if and only if item j is selected. Constraint
(2.2) imposes that the sum of the weights of the selected items does not exceed
the available capacity. The free variable η represents the penalty term: constraints
(2.3) impose that η is greater than or equal to the penalty of any selected item.

Throughout the paper we make the assumptions that coefficients aj are non-
negative integers and coefficients cj and pj are non-negative. We also assume that
aj ≤ b ∀j ∈ M (i.e. each item can fit into the knapsack) and

∑
j∈M aj > b

An algorithm for the PKP 17

(otherwise the capacity constraint would be redundant and the problem would be
trivial). We also assume that the items have been ordered by non-increasing values
of their penalty pj, so that j1 < j2 implies pj1 ≥ pj2 . In the remainder we define as
leading item of a solution x the item j∗ such that xj∗ = 1 and pj∗ ≥ pjxj ∀j ∈ M,
that is the item with the maximum penalty among those which belong to the
solution. Obviously η = pj∗ at optimality.

The PKP is NP-hard in the weak sense like the knapsack problem (KP). The
KP is a special case of the PKP arising when pj = 0 ∀j ∈ M. If the leading item
j∗ of the optimal solution were known, the complete solution could be computed
by discarding all items with j < j∗ and solving a KP considering the remaining
items. Therefore a simple-minded algorithm for the PKP consists of iteratively
fixing each of the N items as the leading item and to solve the corresponding KP.
Since the KP can be solved in O(Nb) time, this method yields a pseudo-polynomial
algorithm with time complexity O(N 2b) for the PKP.

2.3 An algorithm for the PKP

Once the leading item is selected, the PKP reduces to a KP, that can be solved by
very effective algorithms [88] [72]. However instead of solving N different knapsack
problem instances, one for each possible choice of the leading item, one would like
to solve a smaller number of them. To this purpose our algorithm performs an
exhaustive search to identify the optimal leading item.

General description. The algorithm sorts the items by non-increasing penalty
and it initializes a best incumbent lower bound, zLB, and a set of candidate leading
items, S. Then the algorithm computes upper bounds to the value of the PKP
for each possible choice of the leading item. These upper bounds are used both to
guide the search in a best-first-search fashion and to terminate the algorithm. Af-
ter that the algorithm iteratively selects a most promising leading item according
to its associated upper bound, it solves a corresponding binary knapsack problem
and this yields a feasible PKP solution. The information provided by the optimal
solution of the binary knapsack problem is also exploited by additional fathoming
rules and domination criteria to reduce the number of possible candidate leading
items to be considered.

Preprocessing and initialization. The algorithm requires to sort the items
by non-increasing value of pj. For sorting the items we used a standard quicksort
algorithm (implemented by the qsort library function of the ANSI C language),
with median pivot selection [48]. Once the items have been sorted, we consider the
range {l, . . . , N} such that

∑N
j=l aj ≤ b and

∑N
j=l−1 aj > b. The optimal solution

of the PKP involving only items in {l, . . . , N} can be computed in linear time
since the capacity constraint is inactive. This optimal value is kept as an initial

18 – Ch. 2 An optimization algorithm for a penalized knapsack problem

lower bound zLB and all items in the range {l, . . . , N} are no longer considered as
candidate leading items.

Reduction. Some more items that cannot be optimal leading items are iden-
tified as follows. Whenever cj ≤ pj − pj+1, item j can be discarded from the set
S of candidate leading items. Given a PKP solution with j as a leading item a
non-worse PKP solution can be obtained by simply deleting item j from it, since
the decrease in the penalty term η is not less than the loss in the sum of profits.

Notation. In the remainder we use the following notation. With KP (j) we
indicate the optimal value of the binary knapsack problem in which the only items
available are those in the range [j, . . . , N].

KP (j) = max {
N∑

i=j

cixi :
N∑

i=j

aixi ≤ b, xi ∈ {0, 1} ∀i = j, . . . , N}

With KPj we indicate the optimal value of the binary knapsack problem in which
item j is the leading item.

KPj = cj +max {
N∑

i=j+1

cixi :
N∑

i=j+1

aixi ≤ b− aj, xi ∈ {0, 1} ∀i = j+1, . . . , N}

With PKPj we indicate the optimal value of the penalized knapsack problem in
which item j is the leading item. Hence we have:

PKPj = KPj − pj (2.4)

Finally we indicate by LKPj the optimal value of the linear relaxation of the
binary knapsack problem in which the leading item j has been fixed.

LKPj = cj +max {
N∑

i=j+1

cixi :
N∑

i=j+1

aixi ≤ b−aj, 0 ≤ xi ≤ 1 ∀i = j+1, . . . , N}

To describe the algorithm we use the following inequalities.

pj ≥ pj+1 (2.5)

This is true because of the preliminary ordering of the items.

KP (j) ≥ KP (j + 1) (2.6)

KP (j) ≥ KPj (2.7)

LKPj ≥ KPj (2.8)

An algorithm for the PKP 19

These three inequalities are true because the values on the left hand sides are
optimal values of relaxations with respect to the optimal values on the right hand
sides.

Step 1: computation of upper bounds. It has been observed that the op-
timal fractional value of the continuous knapsack problem is often a good estimate
of the integer one [88]. This suggests that the most promising leading items can
be identified from the values of the corresponding linear relaxations. Hence the
first step of our algorithm consists of the computation of an upper bound µj for
each possible choice of the leading item j = 1, . . . , N .

µj = LKPj − pj ∀j = 1, . . . , N (2.9)

Proposition 2. The value of µj is an upper bound to the optimal value of the
PKP in which j is the leading item.

µj ≥ PKPj ∀j = 1, . . . , N (2.10)

Proof. From definitions (2.4) and (2.9) and from inequality (2.8) it follows µj =
LKPj − pj ≥ KPj − pj = PKPj. ¤

The computation of each upper bound µj requires the optimization of a con-
tinuous knapsack problem, that can be carried out in O(N) time [5]: hence the
computation of all the upper bounds takes O(N 2) time. However, instead of solv-
ing N continuous knapsack subproblems, the optimal solution of each of them can
be obtained by suitably exploiting the structure of the optimal solution of the
previous one and this yields a significant reduction in computing time. Consider
the efficiency of each item j, that is the ratio ej = cj/aj and consider a sorting of
the items by non-increasing value of efficiency. The optimal solution of a continu-
ous knapsack problem can be found by selecting items according to the efficiency
order, until an item is found whose weight exceeds the residual capacity. In order
to fill the knapsack in an optimal way this item, called break item, is taken with a
fractional value. In our algorithm we keep a pointer to the break item after each
optimization; in the subsequent computation the previous leading item is removed
from the knapsack and discarded, while a new leading item is inserted into the
knapsack. This yields to either a violation or a slack in the capacity constraint.
In the former case the new optimal solution is obtained from the previous one by
removing items (or fractions of items) starting from the break item backward; in
the latter case the new optimal solution is obtained by adding items (or fractions
of items) from the break item forward. The worst-case computational complexity
of this procedure is still O(N 2); In fact, consider the following instance

pj =

{
1 if j is odd

2 + ε if j is even
wj =

{
n/2 if j is odd

1 if j is even
hj = n− j + 1 c = n/2

20 – Ch. 2 An optimization algorithm for a penalized knapsack problem

where ε is any small positive constant. Only the item 1 is selected in the first
LKP relaxation, and in the second LKP relaxation item 1 is removed and the n/2
items with even indices are added. Then, in the third LKP relaxation, item 2 is
removed, item 3 is inserted and n/2 − 1 items with even indices removed. Hence,
the total number of steps is

∑n
j=1(n− j + 1)/2 = n/2 · (n+ 1)/2 ∈ O(n2).

Thus the complexity of the two initial sortings is dominated by the subsequent
computations. However, we observed that on the average, a few iterations are
needed for computing each µj value subsequent to the first. Notice that the test
between brackets in the figure need not to be evaluated, as for each j we are fixing
a set of variables to 0, and each weight is less than or equal to the capacity value.
Therefore, a feasible LKP solution always exists.

Step 2: search. In the second step of our algorithm at each iteration the
most promising leading item k is chosen: k = argmaxj∈S{µj} where S is the set of
indices of candidate leading items not yet considered or fathomed. As soon as µk

is found to be not greater than the best incumbent lower bound zLB, the algorithm
terminates. Once the most promising item k has been selected, a binary knapsack
problem is solved, where the only available items are those with index not less
than k.

To solve binary knapsack problem instances we used Pisinger’s MINKNAP
algorithm [88], that is very fast and exploits the optimal solution of the continuous
relaxation both as a dual bound and to identify a good starting primal solution.
MINKNAP dynamically expands the core of the knapsack problem and this can
be well exploited in the PKP context: when we sort the items by efficiency, we
break ties by rewarding items with higher penalty value. Since the bounds become
tighter and tighter as the core is expanded, this choice reduces the probability of
complementing variables with very high or very low penalty values. We observed
a significant improvement in computation time when we applied this technique for
solving subset-sum problems (see Section 2.4).

Every time we optimize a binary knapsack problem we get an optimal value
KP (k) but also a feasible solution to the PKP, which is obtained as follows. Let
x be the optimal solution of the binary knapsack problem.

x = argmax{
N∑

i=k

cixi :
N∑

i=k

aixi ≤ b, xi ∈ {0, 1} ∀i = k, . . . , N}

The structure of x allows to apply a dominance criterion. Let h be the leading
item in x, that is

h = min {i : xi = 1}

Then the following proposition holds.

An algorithm for the PKP 21

Computing the µj relaxation values

Input: the capacity value c and the set M of items j,
each having a weight wj, a price pj and a weight wj

Output: a set of µj values, representing the upper bound values

sort items j ∈ M = {1, . . . , n} by non-increasing value of efficiency pj/wj

for each j ∈ M do sj := 0.0
j:= 1
prev := null /* where pnull = 0, wnull = 0 and µnull = 0 */

while M 6= ∅ do

j∗:= argmaxj∈M{hj}
µj∗ := µprev − pprev + hprev + (1.0 − sj∗) · pj∗ − hj∗

c:= c + wprev − (1.0 − sj∗) · wj∗

sprev:= 0.0; sj∗ := 1.0
M:= M\ {j∗}

if c > 0 then

while j 6∈ M do j:= j + 1
if j ≤ n then

while c − (1.0 − sj) · wj ≥ 0 and j ≤ n do

µj∗ := µj∗ + (1.0 − sj) · pj

c:= c − (1.0 − sj) · wj

sj := 1.0
j:= j + 1; while j 6∈ M and j ≤ n do j:= j + 1

if j ≤ n then

µj∗ := µj∗ + c/wj · pj

sj := sj + c/wj

c:= 0.0

if c < 0 then

while j 6∈ M do j:= j − 1
while c + sj · wj ≤ 0 (and j ≥ 1) do

µj∗ := µj∗ − sj · pj

c:= c + sj · wj

sj := 0.0
j:= j − 1; while j 6∈ M (and j ≥ 1) do j:= j − 1

(if j ≥ 1 then)

µj∗ := µj∗ + c/wj · pj

sj := sj + c/wj

c:= 0.0

prev := j∗

Figure 2.1: Computing the µj upper bounds

Proposition 3. No leading item between k and h can dominate leading item h.

PKPj ≤ PKPh ∀k ≤ j ≤ h

Proof. First we observe that x is optimal for the binary knapsack problem with
items in [k, . . . , N] and it is also feasible for the binary knapsack problem with
items in [h, . . . , N]; therefore it is optimal for all binary knapsack problems with
items in [j, . . . , N] for all j such that k ≤ j ≤ h. A second observation is that

22 – Ch. 2 An optimization algorithm for a penalized knapsack problem

KP (h) = KPh: since xh = 1, the optimal solution of the binary knapsack problem
in which all items in [h, . . . , N] are available is also feasible for the binary knapsack
problem in which item h is the selected leading item. Therefore it is also optimal
for the latter problem. Now consider any index j such that k ≤ j ≤ h. For the
two observations above and for relations (2.4), (2.5) and (2.7) we obtain PKPj =
KPj − pj ≤ KP (j) − pj = KP (h) − pj ≤ KP (h) − ph = KPh − ph = PKPh. ¤

Owing to Proposition 3 all leading items in the range [k, . . . , h] can be discarded
from further consideration without losing the optimality guarantee. A primal
feasible solution to the PKP is given by x and its value is KP (k) − ph.

In addition the information given by the binary knapsack problem is exploited
to compute another upper bound νk

j to the optimal value of PKPj for all j > k.
This upper bound is defined as follows.

νk
j = KP (k) − pj ∀j = k + 1, . . . , N

Proposition 4. The value νk
j is an upper bound to the value of the PKP with

leading item j.

νk
j ≥ PKPj ∀j = k + 1, . . . , N

Proof. Consider any item j > k. For relations (2.4), (2.6) and (2.7) we obtain
νk

j = KP (k) − pj ≥ KP (j) − pj ≥ KPj − pj = PKPj. ¤

In general there is no relation between the values of the two upper bounds µj

and νk
j . The value of νk

j for any fixed k is monotonically non-decreasing when j
increases, which is not true in general for the value of µj.

Proposition 5. The upper bounds νk
j are non-decreasing with j for any fixed k.

νk
j ≤ νk

j+1 ∀j = k + 1, . . . , N

Proof. The proof directly comes from inequality (2.5). ¤

After the computation of the optimal solution of a binary knapsack problem,
the algorithm exploits Proposition 5 to sequentially test all candidate leading items
j > h, starting from h + 1 onward, and to discard them while νh

j remains below
the value of the best incumbent solution, zLB. This is equivalent to state that the
algorithm discards all candidates j > h whose penalty is not less thanKP (h)−zLB.

The pseudo-code of the algorithm is reported in Figure 2.2.

Experimental analysis 23

Optimization algorithm for the PKP

Input: For each item j ∈ M a weight aj , a profit cj and a penalty pj ; a capacity coefficient b.
Output: An optimal PKP solution x∗ and a value zLB

begin

/* Initialization */
zLB:= −∞; l:= N

while (
PN

j=l aj ≤ b) do

if (
PN

j=l cj − pl > zLB) then

zLB:=
PN

j=l cj − pl; x∗
j := 0 ∀j < l; x∗

j := 1 ∀j ≥ l

l:= l − 1
S:= {1, . . . , l}
/* Reduction */
for each j ∈ S do if (cj ≤ pj − pj+1) then S:= S \ {j}
/* Compute upper bounds from linear relaxations */
for each j ∈ S do µj := LKPj − pj

/* Examine all candidate leading items */
repeat

/* Select the most promising candidate */
k:= argmaxj∈S{µj}; S:= S \ {k}
/* Termination test */
if (µk ≤ zLB) then goto end

/* Solve a KP, store the optimal solution and its value */

x:= argmax{
PN

i=k cixi :
PN

i=k aixi ≤ b, xi ∈ {0, 1} ∀i = k, . . . , N}

KP (k):= max {
PN

i=k cixi :
PN

i=k aixi ≤ b, xi ∈ {0, 1} ∀i = k, . . . , N}
for each j = 1, . . . , k − 1 do xj := 0
/* Identify the leading item and apply the dominance criterion */
h:= k
while (xh = 0) do

h:= h + 1; S:= S \ {h}
/* Update the best incumbent primal solution */
if (KP (k) − ph > zLB) then

zLB:= KP (k) − ph; x∗:= x
/* Compute the upper bound ν to discard more candidates */
j:= h + 1
while (KP (k) − pj ≤ zLB) do

j:= j + 1; S:= S \ {j}
until (S = ∅)

end

Figure 2.2: Pseudo-code of our optimization algorithm for the PKP

2.4 Experimental analysis

Computing environment. Our algorithm was implemented in ANSI C. All the
tests were done on a PC equipped with a Pentium IV 1.6 GHz processor, 512MB
RAM and Linux operating system. In the absence of a competitor special-purpose
code for the PKP, we tested our algorithm against the general-purpose solver
CPLEX 8.1. A time limit of ten minutes was imposed for each problem instance.

Input data. To generate input data, we adapted the gen2 generator, that
was devised for the KP [72]. This generator receives in input the number of items

24 – Ch. 2 An optimization algorithm for a penalized knapsack problem

p type Correlation c type
p1 no correlation c1
p2 weak correlation c2
p3 strong correlation c3
p4 inverse strong correlation c4
p5 almost strong correlation c5
p6 subset-sum problems c6
p7 constant perimeter
p8 constant area

profit = area c7

Table 2.1: Summary of correlation types

(N), the range in which coefficients are generated (R), the method for generating
weights (a type), the tightness of the capacity constraint (ρ), the type of correlation
between penalties and weights (p type), the type of correlation between profits and
weights (c type).

First we set N = 1000 and R = 1000 and we considered two different a types,
indicated by a1 and a2. In instances of class a1 weights are generated at random
with uniform probability distribution in [1, . . . , R]; this corresponds to correlation
type 1 in gen2. In instances of class a2 weights are generated in the same way but
small weights are discarded; this corresponds to correlation type 15 in gen2.

The parameter ρ is defined as the ratio between the capacity of the knapsack
and the sum of the weights of all the items. We considered three different values
for ρ, that is 0.5, 0.1 and 0.01.

Then we generated penalties in eight different ways (p1...p8) and profits in
seven different ways (c1...c7) as shown in Table 2.1. In both cases the first six
correlations correspond to those defined in gen2 as correlation types numbered
from 1 to 6. In p7 instances we generated penalties setting pj = R − aj + 1, to
represent constant perimeter rectangles, where the penalty is interpreted as the
height of the rectangle. In p8 instances we generated penalties setting pj = R/aj,
to represent constant area rectangles. In c7 instances we generated profits setting
cj = pjaj, to represent rectangular items whose profit is proportional to the area.

For each combination of the parameters 5 instances were generated. The overall
number of instances in our dataset is therefore 2 × 3 × 8 × 7 × 5 = 1680. Then
we repeated our experiments, setting N = 10000 and R = 10000, thus generating
1680 more instances in the same way illustrated above.

Results and comments. The average results for each combination of parame-
ters are reported in tables 2.2 and 2.3. Both tables represent the same results but
grouped in different ways: in Table 2.2 the results are grouped according to the p
correlation type; in Table 2.3 the results are grouped according to the c correlation
type. Hence in Table 2.2 each row refers to seven different c correlation types (35
instances), while in Table 2.3 each row refers to eight different p correlation types
(40 instances).

Experimental analysis 25

The first block of these tables indicates the a correlation type, the value of the
parameter ρ and the p or c correlation type. The second block reports the results
obtained by CPLEX: the average computing time and the number of instances
solved to proven optimality within the time limit. The third block reports the
results obtained by our algorithm: the average number of calls to the MINKNAP
algorithm, the average computing time and the number of instances solved to
proven optimality within the time limit. The number of calls and the computing
time are referred only to the instances solved within the time limit. The forth
block reports the results referred to the larger instances with 10000 items.

CPLEX could solve only 62.7% of the smaller instances to proven optimality
within the time limit, while our algorithm solved all of them. In no case CPLEX
was faster than our algorithm. For the classes in which both CPLEX and our
algorithm solved the same instances, the latter was always faster. CPLEX was
effective only for classes c1 and c2, in which almost all instances were solved, but
the running time was two orders of magnitude higher with respect to our algorithm.
For these reasons only our algorithm was tested on larger instances.

The tightness of the capacity constraint and the type of correlation of weights
affected the computational performances of both CPLEX and our algorithm. While
for instances in class a1 CPLEX performed better with tight capacity constraints
(low values of ρ), the opposite was observed for instances of class a2. We explain
this with the following observation: if the capacity constraints are tight, CPLEX
is able to generate effective cover cuts but the upper bound given by the contin-
uous relaxation of the knapsack problem may be loose; for random generation of
the weights the former effect is stronger than the latter. When small weights are
discarded, the latter effect is stronger than the former, since small weights help in
filling the knapsack, and hence the integer optimal solution is more similar to the
fractional optimal one. Our algorithm works better when the capacity constraint
is tighter, even if the number of calls to the MINKNAP algorithm increases. In
these cases a few items are selected in each integer KP solution and this makes
the reduction test more effective.

An increase in the computation time for our algorithm occurred when solving
instances of class a2, but the average number of calls to the MINKNAP algo-
rithm was almost the same. Hence the loss of effectiveness was entirely due to a
higher effort in solving the knapsack problem instances and this is consistent with
observations made in other papers [72].

The hardest class for CPLEX was class c4: only 18.3% of the instances were
solved. On the contrary class c4 (inverse correlation) seems to be easier than class
c3 (direct correlation) for our algorithm.

From our experiments we conclude that the correlation between profits and
penalties is more important than the correlation between penalties and weights.

26 – Ch. 2 An optimization algorithm for a penalized knapsack problem

When high profits may correspond to low penalties, the PKP solution is likely to
be similar to the optimal solution of the KP obtained disregarding the penalties.
On the opposite, when profits and penalties are correlated, the optimal solution
of the knapsack problem tends to involve items with high profit, that are heavily
penalized by high penalty coefficients. In this case the optimal solution of the KP
and that of the PKP tend to be quite different.

Test on 2LSPP instances. Finally, we did some tests using our algorithm for
pricing purposes in a branch-and-price algorithm for the 2LSPP. We considered two
datasets proposed in the literature. The first one contains five classes of instances
(named BENG, HGCUT, GCUT, HT, NGCUT); the second one contains ten
classes of instances (named BW and MV). Both datasets are described in [68].

Root node. We considered what happens at the root node of a branch-and-price
algorithm for the 2LSPP: we examined the task of solving the linear relaxation
of the set covering reformulation of the 2LSPP with column generation and we
compared two different pricing methods to be embedded in the column generation
algorithm: the first is a general-purpose ILP solver (ILOG CPLEX) and the second
is the algorithm presented in this paper. In table 2.4 we report the results of this
experiment. The first block indicates the instance class name and the number
of instances in each class. The second and third blocks include the number of
iterations (CG iter.), the number of generated columns (cols) and the time required
to complete the column generation algorithm. We set a time-out equal to one hour
for each instance.

Our algorithm definitely outperformed CPLEX. On two of the ten instances in
class BENG, the CPLEX-based column generation did not terminate in one hour
(the corresponding values were discarded in the computation of the average results
reported in column “time” of Table 2.4). On the remaining instances the CPU time
required by CPLEX-based column generation is two orders of magnitude higher
than that required by column generation using our algorithm.

2.5 Concluding remarks

In this paper we have introduced a penalized knapsack problem and we have pre-
sented an exact optimization algorithm. Although the problem has a compact ILP
formulation, the computational results show that a general-purpose solver is not
always effective. On the opposite our specialized algorithm proved to be much
more effective and robust on a wide range of instances. Preliminary results show
that the use of the algorithm presented in this paper as a pricing subroutine al-
lows a branch-and-price algorithm to solve the 2LSPP faster than a state-of-the-art
general-purpose ILP solver.

Instances N = 1000 N = 10000
CPLEX 8.1 Our algorithm Our algorithm

a type ρ p type time (s) inst. iter. time (s) inst. iter. time (s) inst.
1 0.5 1 10.77 27 1.60 0.14 35 1.46 9.07 35

2 42.54 24 2.51 0.09 35 6.19 39.30 32
3 8.35 22 9.40 0.95 35 22.87 25.27 28
4 9.42 24 12.06 1.84 35 25.60 40.92 29
5 42.85 22 9.20 0.81 35 7.53 21.89 27
6 14.96 22 13.86 1.54 35 38.85 70.00 27
7 31.97 16 7.74 0.73 35 17.10 33.82 34
8 13.71 26 2.57 0.38 35 1.97 18.84 32

1 0.1 1 5.74 28 2.00 0.08 35 3.42 30.94 34
2 13.85 28 4.17 0.17 35 7.37 24.41 35
3 15.03 20 13.06 0.90 35 15.21 14.56 29
4 20.90 23 12.77 0.74 35 24.86 34.18 27
5 6.45 18 8.69 0.47 35 37.81 92.23 31
6 13.62 23 11.51 0.37 35 13.24 31.43 26
7 9.12 25 12.77 1.46 35 9.57 8.95 32
8 27.51 25 2.77 0.49 35 1.89 16.33 32

1 0.01 1 43.35 32 2.40 0.01 35 4.11 6.12 35
2 4.79 30 3.17 0.05 35 6.84 17.48 34
3 17.14 26 6.79 0.05 35 50.43 15.70 35
4 7.72 25 11.40 0.11 35 32.29 10.11 31
5 12.70 27 8.80 0.08 35 21.37 10.61 35
6 10.35 29 8.49 0.07 35 28.31 7.02 35
7 5.07 25 25.86 0.27 35 44.64 63.26 34
8 8.54 22 3.20 0.09 35 2.26 7.04 35

2 0.5 1 17.42 23 2.34 0.54 35 2.06 45.07 35
2 35.71 23 5.91 1.69 35 9.42 88.41 30
3 7.50 20 17.51 3.14 35 7.63 52.59 28
4 12.76 17 27.51 17.49 35 3.72 18.72 27
5 8.05 19 14.60 5.54 35 16.34 57.23 31
6 8.03 18 17.26 4.61 35 5.63 47.87 29
7 13.98 24 12.06 2.30 35 1.40 12.99 30
8 3.64 33 1.71 0.48 35 1.94 53.82 34

2 0.1 1 45.57 23 3.77 0.48 35 4.26 58.86 33
2 56.61 20 8.37 1.05 35 9.22 84.07 30
3 153.50 15 22.83 2.56 35 10.33 69.85 29
4 56.52 15 18.06 2.14 35 5.73 31.04 25
5 10.17 13 14.51 1.82 35 13.83 37.79 27
6 14.79 16 21.09 1.91 35 19.92 50.98 27
7 3.61 21 16.69 2.71 35 3.47 12.51 30
8 4.43 32 2.17 0.42 35 1.88 42.17 33

2 0.01 1 24.88 35 4.14 0.02 35 8.80 30.64 35
2 48.12 10 13.43 0.29 35 13.89 69.71 35
3 8.39 10 61.26 2.57 35 50.10 78.66 29
4 134.97 13 11.74 0.12 35 21.23 55.09 31
5 18.99 11 47.06 1.80 35 43.44 71.44 30
6 104.19 12 52.26 2.15 35 63.53 75.78 31
7 181.84 11 37.34 0.35 35 5.92 44.35 25
8 9.54 30 3.11 0.21 35 2.57 46.99 33

Table 2.2: Computational results for CPLEX 8.1 and our algorithm: penalties-
weights correlation.

Problem N = 1000 N = 10000
CPLEX 8.1 Our algorithm Our algorithm

a type ρ c type time (s) inst. iter. time (s) inst. iter. time (s) inst.
1 0.5 1 1.04 40 1.03 0.01 40 1.00 0.19 40

2 5.15 40 1.08 0.01 40 1.05 0.19 40
3 38.28 17 18.93 2.64 40 79.08 143.84 25
4 10.15 8 7.53 1.00 40 15.46 53.52 36
5 78.48 11 19.95 1.97 40 15.88 42.86 30
6 26.39 38 1.58 0.01 40 1.33 0.30 40
9 2.59 29 1.50 0.02 40 1.53 1.05 33

1 0.1 1 0.77 40 1.50 0.01 40 1.25 0.11 40
2 4.35 40 1.33 0.01 40 1.21 0.12 39
3 26.86 28 21.63 0.59 40 51.06 69.83 28
4 24.62 12 15.33 2.18 40 10.59 75.73 33
5 22.26 18 15.23 0.29 40 34.57 72.38 36
6 13.52 37 2.28 0.02 40 2.95 3.40 40
9 15.05 15 2.00 1.01 40 2.29 4.63 30

1 0.01 1 0.36 40 1.55 0.01 40 1.45 0.08 40
2 0.88 40 1.39 0.01 40 1.40 0.08 40
3 12.40 36 12.23 0.04 40 74.75 15.44 36
4 19.16 10 26.73 0.52 40 32.99 63.81 38
5 36.25 31 11.70 0.04 40 38.68 10.06 40
6 16.41 38 5.63 0.02 40 13.88 25.96 40
9 23.27 21 2.13 0.02 40 3.33 4.75 40

2 0.5 1 0.90 40 1.03 0.01 40 1.00 0.18 40
2 15.98 40 1.03 0.01 40 1.00 0.19 40
3 9.77 20 41.65 20.69 40 24.50 135.84 19
4 9.17 5 11.95 2.76 40 3.14 124.98 34
5 41.28 7 27.83 7.77 40 16.72 108.23 31
6 24.35 33 2.03 0.02 40 1.98 1.22 40
9 2.28 32 1.05 0.07 40 1.08 8.99 40

2 0.1 1 1.15 40 1.70 0.01 40 1.45 0.10 40
2 15.54 40 1.45 0.01 40 1.23 0.12 40
3 19.12 23 41.58 4.54 40 28.75 90.74 21
4 104.42 3 17.20 3.47 40 7.14 177.34 26
5 58.82 13 24.80 2.57 40 20.70 82.87 28
6 144.24 18 5.80 0.09 40 4.93 5.25 40
9 4.55 18 1.53 0.76 40 1.52 13.13 39

2 0.01 1 0.54 40 5.95 0.01 40 2.85 0.10 40
2 62.83 37 5.25 0.02 40 2.33 0.11 40
3 131.03 14 72.15 3.30 40 118.30 174.86 27
4 14.52 6 20.03 0.60 40 10.46 117.40 33
5 119.36 13 48.45 2.03 40 20.76 61.18 34
6 51.86 13 44.20 0.49 40 29.74 59.82 35
9 8.85 9 5.53 0.13 40 2.40 11.18 40

Table 2.3: Computational results for CPLEX 8.1 and our algorithm: profits-
weights correlation

Problem CPLEX 8.1 Our algorithm
Class # inst. CG iter. cols time (s) CG iter. cols time (s)

BENG 10 425.38* 435.38* 742.57* 524.60 927.40 7.42
CGCUT 3 70.00 82.00 5.94 57.33 108.33 0.06

GCUT 4 24.50 38.75 1.36 22.50 41.25 0.03
HT 9 86.67 90.89 1.89 63.44 117.44 0.04

NGCUT 12 24.50 29.83 0.25 17.50 36.33 0.01
Avg. 126.21 135.37 150.40 137.08 246.15 1.51

MV01 50 201.62 224.40 79.46 160.80 303.90 0.28
MV02 50 20.74 190.24 1.02 17.10 353.38 0.02
MV03 50 13.14 60.70 0.53 10.48 61.76 0.02
MV04 50 168.12 190.10 30.39 145.98 230.62 0.20
BW01 50 65.52 99.54 4.54 60.08 117.48 0.05
BW02 50 308.94 319.42 93.47 252.00 456.90 0.51
BW03 50 103.58 132.70 9.83 90.08 168.46 0.10
BW04 50 354.34 364.74 237.02 289.30 515.68 0.66
BW05 50 90.02 122.36 8.02 76.66 147.16 0.09
BW06 50 387.12 396.86 361.56 308.08 559.50 0.81

Avg. 171.31 210.11 82.58 141.06 291.48 0.27

Table 2.4: Comparison of pricing algorithms at the root node for the 2LSPP

30 – Ch. 2 An optimization algorithm for a penalized knapsack problem

Chapter 3

A branch-and-price algorithm for
the two-dimensional level strip
packing problem

The two-dimensional level strip packing problem (2LSPP) consists of packing rect-
angular items of given size into a strip of given width divided into horizontal levels.
Items packed in the same level cannot be put on top of one another and their over-
all width cannot exceed the width of the strip. The objective is to accommodate
all the items while minimizing the overall height of the strip. The problem is NP-
hard and arises from applications in logistics and transportation. We present a set
covering formulation of the 2LSPP amenable for a column generation approach,
where each column corresponds to a feasible combination of items inserted into
the same level. For the exact optimization of the 2LSPP we present a branch-
and-price algorithm, where the pricing problem is a penalized knapsack problem.
Computational results are reported for benchmark instances with some hundreds
items.

3.1 Introduction

In several industrial applications it is required to place a set of rectangular items in
standard stock units. In wood and glass manufacturing, for instance, rectangular
components must be cut from large pieces of material; in warehouses, the goods
must be placed on shelves; in the design of newspapers’ layout it is needed to
arrange in an effective way articles and advertisements. This kind of applications
are often modeled as two-dimensional packing or cutting problems. Packing and
cutting is a wealthy research area: a complete review on related models and meth-
ods can be found in [30], while in [35], [36] and [34] the authors propose general

32 – Ch. 3 A B&P algorithm for the 2LSPP

graph-theoretical frameworks for devising bounds on multi-dimensional packing
problems.

In production contexts as clothes or paper manufacturing, a single strip of
material is often available, and a set of items must be obtained from the strip.
The aim is to pack the items minimizing the height of the portion of strip to
be cut. This problem is called two-dimensional strip packing (2SPP). Recently a
fully polynomial time approximation scheme for the 2SPP has been proposed [56].
Metaheuristic approaches include simulated annealing [32] and genetic algorithms
[50]. In [71] a branch-and-bound algorithm is presented, for the exact optimization
of the 2SPP, that is able to solve instances with up to 200 items in one hour of
computing time.

We study a variation of the 2SPP in which a further restriction is imposed: the
items must be organized into horizontal strips, indicated as levels ; inside each level,
the items cannot be put on top of one another. This kind of variation, referred
to as two-dimensional level strip packing (2LSPP) [67], is NP-hard in the strong
sense, since it contains the bin-packing problem as a special case [41].

The 2LSPP can be approximated with fast heuristics, which provide also an
a priori guarantee on the quality of the solution [12] [67]. More recently, Lodi et
al. [67] proposed a formulation for the 2LSPP involving a polynomial number of
variables and constraints; the effectiveness of state-of-the-art general purpose ILP
solvers makes this approach particularly appealing.

In this paper we introduce a new formulation for the 2LSPP as a set covering
problem. The linear relaxation of this model is computed with column generation,
and the bound found in this way is used in a branch-and-price enumeration algo-
rithm. In Section 3.2 we present our formulation, and we discuss its relationships
with the compact formulation of Lodi et al.; we also describe our method for solv-
ing the corresponding linear program. In Section 3.3 we highlight the main issues
in the design of our branch-and-price algorithm. Finally, in Section 3.4 we report
the details of an experimental analysis.

3.2 Problem formulation

In the 2LSPP it is given a strip, whose width is a positive integer W , and a set
N , where each j ∈ N is an item whose width and height are a positive integers
denoted with wj and hj respectively. The items must be organized into horizontal
strips called levels: the sum of widths of items in the same level cannot exceed the
width of the strip.

Items in the same level cannot be piled up. Therefore, the height of each
level corresponds to the maximum height of an item in that level. We call this

Problem formulation 33

particular item the leading item, and we say that the leading item initializes the
level. Through the paper we assume that the items are sorted by non-decreasing
height values: hi ≤ hj for each i < j. Hence, without loss of generality, we can
state that no item i > j can be assigned to a level initialized by j. Lodi et al. [67]
proposed the following compact formulation for this problem:

min
∑

j∈N

hjxjj (3.1)

s.t.
∑

j≥i

xij = 1 ∀i ∈ N (3.2)

∑

i<j

wixij ≤ (W − wj)xjj ∀j ∈ N (3.3)

xij ∈ {0, 1} ∀i ≤ j ∈ N (3.4)

Each binary variable xij indicates whether item i is assigned to a level in which
j is the leading item; therefore each binary variable xjj indicates whether item j is
a leading item. Because of the ordering of the items, we can fix each xij variable
with i > j to 0 and remove it from the model. Constraints (3.2) impose that each
item is assigned to a level. Constraints (3.3) impose that the sum of widths of
the items assigned to the same level does not exceed the width of the strip. The
objective is to minimize the overall height of the strip.

3.2.1 A set covering reformulation

A lower bound for the 2LSPP can be obtained from the model above by neglecting
the integrality conditions (3.4). We sharpen this bound exploiting Dantzig-Wolfe
decomposition [76]: let Ωj be the set of levels respecting the width constraints,
defined as follows for each j ∈ N :

Ωj = {x|
∑

i<j

wixij ≤ (W − wj)xjj, 0 ≤ xij ≤ 1}.

Let Kj be the set of the integer points in Ωj and let xk be the generic integer
point of Ωj. Each point x in the convex hull of Ωj can be expressed as a convex
combination of the integer points in Kj:

conv(Ωj) = {x|x =
∑

k∈Kj

xkzk,
∑

k∈Kj

zk = 1 and 0 ≤ zk ≤ 1. (3.5)

34 – Ch. 3 A B&P algorithm for the 2LSPP

Hence, by substitution from the linear relaxation of the 2LSPP, a relaxation of the
2LSPP is the following:

min
∑

j∈N

hj

∑

k∈Kj

xk
j zk

s.t.
∑

j≥i

∑

k∈Kj

xk
i zk = 1 ∀i ∈ N

∑

k∈Kj

zk = 1 ∀j ∈ N (3.6)

0 ≤ zk ≤ 1 ∀j ∈ N ,∀k ∈ Kj

Here, all polyhedra Ωj have been replaced by their convex hulls. Due to this
convexification, the bound found by optimizing this model is at least as tight as
that of the linear relaxation of the 2LSPP.

Each Kj contains a point representing an empty level: they can be dropped
and considered implicitly by stating constraints (3.6) as inequalities:

min
∑

j∈N

hj

∑

k∈Kj

zk

s.t.
∑

j≥i

∑

k∈Kj

xk
i zk = 1 ∀i ∈ N (3.7)

∑

k∈Kj

zk ≤ 1 ∀j ∈ N (3.8)

0 ≤ zk ≤ 1 ∀j ∈ N ,∀k ∈ Kj

Since in all optimal solutions no item is chosen more than once as a leading
item, constraints (3.8) are redundant and can be deleted. Furthermore, the set
partitioning constraints (3.7) can be replaced by set covering constraints, because
it is never convenient to pack an item in more than one level.

The resulting model is the following:

MP) min
∑

j∈N

hj

∑

k∈Kj

zk (3.9)

s.t.
∑

j≥i

∑

k∈Kj

xk
i zk ≥ 1 ∀i ∈ N (3.10)

0 ≤ zk ≤ 1 ∀j ∈ N , ∀k ∈ Kj (3.11)

In this master problem (MP) the column corresponding to each variable zk with
k ∈ Kj represents a feasible set of items packed into a same level j. An alternative
formulation of the 2LSPP is obtained by restoring the integrality conditions zk ∈
{0, 1}.

Problem formulation 35

3.2.2 The pricing problem

Model (3.9) – (3.11) may have a huge number of columns. Therefore, a problem
involving a restricted set of variables (RMP) is considered and columns not in-
cluded in the RMP are iteratively generated when needed, in order to obtain an
optimal solution of the whole MP.

Let λ be the vector non-negative dual variables associated to covering con-
straints (3.10) in a RMP optimal solution. The pricing problem we need to solve
to identify new columns is the following: π(λ) = min j{πj(λ)}, where for each
j ∈ N

πj(λ) = min hjxj −
∑

j∈N

∑

i≤j

λixi

s.t.
∑

i<j

wixi ≤ (W − wj)xj ∀j ∈ N

xi ∈ {0, 1} ∀j ∈ N , ∀i ≤ j

Thus a negative reduced cost column can be generated by solving at most |N |
binary knapsack problems, obtained by setting to 1 one xj variable at a time.

However solving a large number of knapsack problems to optimality to generate
negative reduced cost columns can be unnecessary, since we just need one negative
reduced cost column, provided it exists. Therefore we solve a pricing problem in
which the leading item is not fixed, but rather it must be chosen in an optimal
way, that is we search for the column of minimum reduced cost for all possible
choices of the leading item. The pricing problem can be rewritten in an equivalent
way as follows:

π(λ) = min η −
∑

i∈N

λixi (3.12)

s.t.
∑

i∈N

wixi ≤ W (3.13)

hixi ≤ η ∀i ∈ N (3.14)

xi ∈ {0, 1} ∀i ∈ N

Each binary variable xi is equal to 1 if and only if item i is assigned to the level.
The free variable η is a penalty term. Only one of the constraints (3.14) is active
at a time. That is, the value of η is determined by the height of the leading item
of the level. The capacity constraint (3.13) still impose that the overall width of
the level does not exceed the width of the strip.

The objective function (3.12) can be stated in maximization form

π(λ) = −max {
∑

i∈N

λixi − η}.

36 – Ch. 3 A B&P algorithm for the 2LSPP

This pricing problem can be solved with special purpose algorithms for the penal-
ized knapsack problem (PKP), discussed in Chapter 2.

3.3 Branch-and-price

Branching strategy.
We base our branching rule on the x variables of the compact formulation

instead of considering the z variables of the MP: once an optimal MP solution
z∗ is obtained, a corresponding (fractional) solution x∗ in terms of the original
variables can be found by fixing x∗ij =

∑
j≥i

∑
k∈Kj

xk
i z

∗
k for each i, j ∈ N .

We have adopted a two-stage branching strategy: in the first stage search tree
branching decisions are taken on the xjj variables, that is the leading items are
chosen; since in each leaf of this search tree the set of leading items, and therefore
the height of each level, is defined, the aim of the second stage search tree is to
solve a feasibility problem: the remaining items must be organized in the levels
initialized by the chosen leading items, without violating the width and height
constraints. In both stages, branching is operated on the variable whose x∗

ij value
is closest to 0.5. This variable is fixed to 0 in one branch and to 1 in the other
branch.

These conditions slightly change the structure of the pricing problem. On the
first stage, each time a xjj variable is fixed to 1, j is discarded from the set of
items in the PKP optimization, and an additional KP is solved, for computing the
best completion of the solution in which j is the leading item; when a xjj variable
is fixed to 0, it is simply discarded from the set of candidate leading items in the
PKP computation. Since all the xjj variables are fixed on the first stage search
tree, on the second stage one has to solve a KP for each of the chosen leading
items. Therefore, the fixing of further xij variables only reduces the dimension of
these KP instances.

The search trees are explored in a best-bound-first order.

Initialization. In order to obtain an initial set of columns to populate the
RMP, we use the well known Best-Fit Decreasing-Height (BFDH) heuristic [67].
The items are iteratively considered from item |N | down to item 1 and in each
iteration the current item is packed into the level with the minimum residual
capacity among those which can receive it. If the item cannot be accommodated
in this way, a new level is initialized. We implemented a simple randomized version
of this heuristic (r-BFDH): a preprocessing step is added, in which a fixed number
r of items are randomly drawn from a uniform probability distribution and the
corresponding levels are initialized.

Besides running the original version of BFDH once, three r-BFDH solutions

Branch-and-price 37

are computed for each r value from 1 to d
∑

i∈N wi/W e, that is the number of levels
in a fractional solution rounded up to the nearest integer; this is a lower bound
on the number of levels composing an optimal solution. The best BFDH solution
value found in this way is also kept as an initial upper bound.

Upper bounds. We experimentally observed that the r-BFDH heuristic often
provides tight bounds. Nevertheless, we incorporate a fast rounding heuristic for
the set covering problem, in order to search for good integer solutions during the
exploration of the search tree. This works as follows: initially, all the items are
uncovered, and the columns of the RMP are sorted by non-increasing value of
the corresponding zk variables; following this order, each column k is considered:
if column k represents a level containing uncovered items, the corresponding zk

variable is rounded up to 1 and each item in k is marked as covered, otherwise the
zk variable is fixed to 0.

We run this heuristic once for each node of the search tree, when the column
generation process is over.

Problem reduction. Consider a generic node P of the search tree; let v(P) be
the value of the partial solution identified by P , N (P) be the set of items fixed as
leading items in that partial solution, and UB be the value of the best incumbent
integer solution. For each item j ∈ N \ N (P), if v(P) + hj ≥ UB, then j can be
discarded from the set of candidate leading items in node P , since by fixing j to
1 the node would be fathomed.

Columns deletion and re-insertion. We found useful to periodically remove
unpromising columns from the RMP: each time a node of the search tree is consid-
ered, the columns in the RMP whose reduced costs are higher than a threshold are
shifted into a separate pool. The reduced cost of each column is computed with
respect to the optimal dual solution on the ancestor node. In our implementation,
the removal threshold is computed as the difference between the best known upper
and lower bounds, divided by d

∑
i∈N wi/W e.

The columns pool is scanned at each column generation iteration: whenever a
column is found, whose reduced cost is negative with respect to the current dual
solution, it is re-inserted in the RMP. Each column is kept into the pool for up to
6 checks.

Lagrangean bounds. It is well known that the bound obtained by optimizing
the set covering linear program can also be obtained by solving a Lagrangean dual
problem [76], when the set of constraints (3.2) are relaxed:

38 – Ch. 3 A B&P algorithm for the 2LSPP

max λ ω(λ) = min
∑

j∈N

hjxjj −
∑

i∈N

λi(
∑

j≥i

xij − 1)

s.t.
∑

i<j

wixij ≤ (W − wj)xjj ∀j ∈ N

xij ∈ {0, 1}. ∀i ≤ j ∈ N

For each set of multipliers λ, this problem is analogous to the pricing problem for
the set covering formulation of the 2LSPP. In fact, it decomposes into independent
subproblems, one for each j ∈ N :

min hjxjj −
∑

i≤j

λixij

s.t.
∑

i<j

wixij ≤ (W − wj)xjj ∀j ∈ N

xij ∈ {0, 1}. ∀i ≤ j ∈ N

Therefore, each subproblem j can be optimized by considering two cases: if variable
xjj is fixed to 1, then the remaining problem is a binary knapsack; this is solved to
optimality obtaining a value πj(λ). If variable xjj is fixed to 0, then each variable
xij with i < j must be set to 0; this yields a solution of value 0. Hence, for any
choice of the λi multipliers, a valid lower bound ω(λ) for 2LSPP is given by:

ω(λ) =
∑

i∈N

λi +
∑

j∈N

min {πj(λ), 0}

However, a key property of our pricing routine is actually to implicitly consider
these πj values to avoid the computation of a large number of knapsack problems.
In fact, the one with minimum value is computed by solving a PKP. Therefore, a
lower bound ω̄(λ) on ω(λ) can be obtained by substituting any πj(λ) value with a
corresponding lower bound π̄j(λ).

ω̄(λ) =
∑

i∈N

λi +
∑

j∈N

min {π̄j(λ), 0}

We initially approximate each π̄j(λ) with the value of the linear relaxation of
the corresponding subproblem. These values are readily available, since they are
computed in a preprocessing step by the algorithm for the PKP. Furthermore,
whenever a tighter bound is computed during the optimization of the PKP, the
corresponding π̄j(λ) value is updated and the quality of the ω̄(λ) bound improved.

Computational results 39

Whenever, during the column generation iterations, the difference between the
highest ω̄(λ) value encountered and the RMP optimal value is less than 10−6, the
column generation process is terminated, and such Lagrangean bound is kept as
lower bound.

Variable Fixing with Lagrangean Penalties: We also used the π̄j(λ) values
in a variable fixing procedure. Once these values have been computed, the following
reduction tests can be checked in linear time: let UB be the value of the incumbent
integer solution,

• for each j such that π̄j(λ) < 0, if dω̄(λ) − π̄je ≥ UB then j can be fixed as
a leading item (xjj = 1),

• for each j such that π̄j(λ) > 0, if dω̄(λ) + π̄je ≥ UB then j can be discarded
from the set of candidate leading items (xjj = 0),

since in both cases, the opposite choice would push the lower bound above the
upper bound, causing the fathoming of the node.

Combinatorial bound. Finally, we incorporated in our bounding procedure
a combinatorial bound (CUT in the remainder) proposed by Lodi et al. [68]. It
consists in splitting each item in vertical strips of width 1, and building levels by
considering these strips in order of non-increasing height. This bound dominates
that given by the LP relaxation of the compact formulation, but no relation of
dominance exists with the set covering LP bound. Since we are assuming that
such a sorting of the items is carried out in a preprocessing step, this bound can
be computed in linear time.

The CUT bound is computed, for each node of the search tree, before the
column generation process is started. Whenever the value of an RMP optimal
solution is found to be less than the value of the CUT bound, the column generation
process is halted, and the CUT bound is kept as a lower bound.

3.4 Computational results

Our branch-and-price algorithm was implemented in C++, and compiled with a
GNU C/C++ compiler version 3.2.2. We solved the restricted linear programs with
the CPLEX 8.1 implementation of the primal simplex algorithm. All the internal
CPLEX parameters are kept at their default values. All our experiments were
run on a Linux workstation equipped with a Pentium IV 1.6GHz processor and
512MB of RAM. A time limit of 1 hour was imposed to each test. Furthermore, the

40 – Ch. 3 A B&P algorithm for the 2LSPP

program was halted whenever the computation exceeded the amount of physical
memory.

In order to assess the effectiveness of our method, we considered two datasets
for two-dimensional packing problems widely used in the literature; they are both
described in [68]. The first one consists of 5 classes of instances: BENG (10
instances), CGCUT (3 instances), GCUT (4 instances), HT (9 instances) and NG-
CUT (12 instances). The second dataset consists of 500 instances, divided into 10
classes of 50 instances, named MV and BW. They contain instances involving up
to 200 items, with different types of correlation between height and width of the
items.

Lower bounds. First, we measured the quality of the set covering LP bound
(SC bound), by comparing it with the LP relaxation of the compact formulation
(LP bound) and the CUT bound. As a measure of duality gap we took, for each
instance (UB − LB)/UB, where UB is the value of the BFDH heuristic solution
and LB is in turn the value of SC, LP and CUT bounds. In tables 3.1(a) and
3.1(b) we report the average values for the instances in each class of the first and
second dataset respectively. Each row of these tables corresponds to a class of
instances, except for the last one that contains the overall average values. Each
column refers to a bounding strategy, except for the first one that contains the
class identifiers.

The LP bound is weaker than the CUT bound also from an experimental point
of view. It is therefore not competitive. On the instances of the first dataset, CUT
is on the average the tightest bound, while on the instances of the second dataset
the SC bound is clearly superior (see, for instance, classes BW03 and BW05).
On the other hand, the computation of the SC bound is two orders of magnitude
slower than that of the CUT bound.

Finally, it is worth noting that the CUT and SC bounds seem to be comple-
mentary, since they yield good approximations in different classes of instances.
This observation was one of the motivations for including the computation of both
bounds in a unique routine, when tackling the problem of solving 2LSPP to opti-
mality.

Solving the 2LSPP to proven optimality. We compared the performance
of our branch-and-price with that of CPLEX 8.1, used as a general purpose ILP
solver to optimize the compact model (3.1)–(3.4). Tables 3.2(a) and 3.2(b) contain
the results for the first and second dataset respectively. As before, each entry of
the table represents an average value between the instances in a class, and the
class identifiers are indicated in the first column. Each table is composed by
two horizontal blocks; each of them corresponds to the solution method indicated

Computational results 41

Class LP bound CUT bound SC bound
BENG 6.75% 0.47% 4.69%
GCUT 14.91% 10.57% 0.14%

NGCUT 12.57% 4.21% 5.10%
CGCUT 4.66% 4.66% 6.95%

HT 7.80% 0.40% 4.09%
Avg. 9.34% 4.06% 4.19%

(a)

Class LP bound CUT bound SC bound
MV 01 8.73% 6.37% 2.29%
MV 02 7.80% 1.00% 5.46%
MV 03 11.95% 8.97% 2.96%
MV 04 7.99% 1.55% 3.80%
BW 01 11.90% 9.40% 2.19%
BW 02 8.68% 1.79% 3.78%
BW 03 14.57% 12.17% 0.69%
BW 04 8.61% 5.42% 4.53%
BW 05 19.18% 17.77% 0.04%
BW 06 9.24% 4.80% 2.56%

Avg. 10.87% 6.92% 2.83%

(b)

Table 3.1: Comparison of lower bounds

in the first row. In each block we report the number of instances in each class
solved to proven optimality (solved inst.), the average gap between the value of
the incumbent primal solution (UB) and the global lower bound (LB) on the
instances whose optimality was not proven, computed as (UB - LB) / UB, and the
average computing time on the instances that were closed. In the last row of each
table we report the total number of instances solved to proven optimality.

Branch-and-price solves all the instances in the first dataset, while CPLEX
leaves a large gap on 7 of the 10 BENG instances. Moreover, branch-and-price is
on the average much faster on the remaining classes. Branch-and-price performs
much better than CPLEX also on the instances of the second dataset, solving more
problems and consistently giving better computing time or tighter approximations.

As a final assessment, we tried to turn off the CUT bound computation in our
procedure, in order to test the effectiveness of a pure column generation routine.
We observed that, besides its contribution in making the computation faster, the
CUT bound is determinant only on the BENG instances of the first dataset. This
is further confirmed by comparing the results regarding the quality of bounds with
those regarding the optimization process: instances MV01, MV03, BW01, BW03
and BW05 can be treated well by branch-and-price, althought the CUT bound is
experimentally loose.

42 – Ch. 3 A B&P algorithm for the 2LSPP

B&P CPLEX 8.1
Class solved inst. avg. gap time(s) solved inst. avg. gap time(s)

BENG 10 0 0.02 3 4.96% 24.47
GCUT 4 0 3.18 4 0 1.06

NGCUT 12 0 0.02 12 0 0.09
CGCUT 3 0 0.43 3 0 67.01

HT 9 0 0.02 9 0 10.14
38 31

(a)

B&P CPLEX 8.1
Class solved inst. avg. gap time(s) solved inst. avg. gap time(s)

MV 01 48 0.68% 12.35 48 0.54% 14.09
MV 02 48 0.99% 6.51 25 4.26% 150.01
MV 03 49 0.26% 8.30 47 0.47% 22.49
MV 04 41 1.03% 55.03 21 3.98% 173.26
BW 01 49 0.28% 2.91 48 0.60% 19.29
BW 02 36 1.00% 202.71 21 4.35% 114.12
BW 03 50 0.00% 0.23 50 0.00% 0.16
BW 04 23 1.31% 123.81 17 2.08% 94.71
BW 05 50 0.00% 0.08 50 0.00% 0.04
BW 06 43 1.20% 99.33 34 1.20% 224.74

437 361

(b)

Table 3.2: Solving the 2LSPP to proven optimality

Chapter 4

An optimization algorithm for the
ordered open-end bin packing
problem

The ordered open-end bin packing problem is a variant of the bin packing problem
in which the items to be packed are sorted in a given order and the capacity
of each bin can be exceeded by the last item packed into the bin. In this work
we present a branch-and-price algorithm for its exact optimization. The pricing
problem is a special variant of the binary knapsack problem, in which the items
are ordered and the last one does not consume capacity. We present a specialized
optimization algorithm for this subproblem. We also discuss the effectiveness of
different branching rules and other implementation details of our branch-and-price
algorithm. Computational results are presented on instances of different size and
items with different correlations between their size and their position in the given
order.

4.1 Introduction

The open-end bin packing problem is a is a variant of the bin packing problem [23]
in which the capacity of each bin can be exceeded by the last item packed into the
bin. This problem was introduced in a paper by Yang and Leung [66]. We study a
variation of this problem introduced in [103], called ordered open-end bin packing
problem (OOEBPP) in which the packing must respect a given order of the items.
The motivation given by the authors for studying this problem is related to the
fare payment in subway stations in Hong Kong. Yang and Leung examined several
algorithms for on-line and off-line approximation and studied their worst-case and
average-case performance.

44 – Ch. 4 An optimization algorithm for the OOEBPP

In this work we present a branch-and-price algorithm for the exact optimiza-
tion of the OOEBPP. In Section 4.2 we introduce the notation used in the paper
and we give a compact formulation of the problem; then we present a set covering
reformulation of the OOEBPP, we introduce a combinatorial bound and we show
how to derive a set of valid inequalities, that may strengthen the set covering
reformulation. Since the set covering formulation involves an exponential num-
ber of variables, in Section 4.3 we present a specialized procedure for generating
columns dynamically. The so-called pricing problem, in fact, is a special variant
of the binary knapsack problem, in which the items are ordered and the last one
does not consume capacity. We present a specialized optimization algorithm for
this subproblem, that allows to effectively solve the pricing problem to optimality,
exploiting suitable bounds and domination criteria. In Section 4.5 we conclude
our description of the branch-and-price algorithm by describing primal bounding
procedures and some implementation details. We discuss also how to exploit dual
solutions to obtain faster convergence and designing variable fixing procedures. In
Section 4.6 computational results are presented on instances of different size and
items with different correlation between their size and their position in the given
order.

4.2 Problem formulation

The OOEBPP is defined as follows. An ordered sequence N of items is given;
each item j ∈ N has a given positive integer weight aj. The items must be packed
into identical bins with a given positive integer capacity b. The objective is to
minimize the number of bins, with the constraint that the capacity of each bin
can be exceeded only by the last item packed into it, where the term “last” is
referred to the ordering of the items in N . In the remainder we call such item
the overflow item of its bin, and we say that it initializes its bin. Through the
paper, we suppose that each element of N is identified by a positive integer, that
is N = {1 . . . N}. Therefore, we assume that each item j ∈ N and the j-th item
of N coincide. An ILP formulation of the problem is the following.

Problem formulation 45

minimize
∑

i∈N

yi (4.1)

s.t.yi +
∑

j>i

xij = 1 ∀i ∈ N (4.2)

∑

i<j

aixij ≤ (b− 1)yj ∀j ∈ N (4.3)

xij ∈ {0, 1} ∀i < j ∈ N (4.4)

yi ∈ {0, 1} ∀i ∈ N (4.5)

Each binary variable yi indicates whether item i is the overflow item in its
bin. Hence the number of bins used is indicated in the objective function (4.1)
by the number of binary variables yi set to 1. Each binary variable xij indicates
whether item i is assigned to the bin in which the overflow item is item j. Because
of the constraint on the ordering of the items, we have xij variables with i < j
only. Constraints (4.2) impose that each item is assigned to a bin, while capacity
constraints (4.3) impose that the overall weight of the items assigned to a bin,
excluding the overflow item, must fit into the bin and must leave at least one
capacity unit available for accommodating the overflow item.

The problem is NP-hard [66].

4.2.1 A set covering reformulation

A lower bound for OOEBPP can be obtained from the linear relaxation of (4.1)–
(4.5), where integrality conditions (4.4) and (4.5) are neglected. Instead, the
branch-and-price algorithm we present in this paper relies on a set covering refor-
mulation of the OOEBPP. Consider the set Ωj defined as follows for each j ∈ N :

Ωj = {(xij, yj)|
∑

i<j

aixij ≤ (b− 1)yj, 0 ≤ xij ≤ 1, 0 ≤ yj ≤ 1}.

Let Kj be the set of the integer points in Ωj and let (xij, yj)
k be the generic integer

point of Ωj. Then each point (xij, yj) in the convex hull of Ωj can be expressed as
a convex combination of the integer points in Kj:

(xij, yj) =
∑

k∈Kj

(xij, yj)
kzk (4.6)

with
∑

k∈Kj
zk = 1 and 0 ≤ zk ≤ 1. Exploiting equation (4.6) we obtain by

substitution the following reformulation of the linear relaxation of the OOEBPP,

46 – Ch. 4 An optimization algorithm for the OOEBPP

where all polyhedra Ωj have been replaced by their convex hulls:

minimize
∑

j∈N

∑

k∈Kj

yk
j zk

s.t.
∑

k∈Ki

yk
i zk +

∑

j>i

∑

k∈Kj

xk
ijzk = 1 ∀i ∈ N

∑

k∈Kj

zk = 1 ∀j ∈ N (4.7)

0 ≤ zk ≤ 1 ∀j ∈ N ,∀k ∈ Kj

Excluding from this linear program all columns corresponding to the integer points
in which all variables are zero (those with yk

j = 0, that implies xk
ij = 0 for each

i < j), constraints (4.7) can be rewritten as inequalities:

minimize
∑

j∈N

∑

k∈Kj

zk

s.t.
∑

k∈Ki

zk +
∑

j>i

∑

k∈Kj

xk
ijzk = 1 ∀i ∈ N (4.8)

∑

k∈Kj

zk ≤ 1 ∀j ∈ N (4.9)

0 ≤ zk ≤ 1 ∀j ∈ N ,∀k ∈ Kj

Now we observe that in all optimal solutions no item will be chosen more than once
as the overflow item of a bin. Therefore constraints (4.9) are redundant and can
be deleted. Hence the remaining model only contains set partitioning constraints
(4.8): in turn these can be replaced by set covering constraints, because it is never
convenient to pack an item more than once. So we obtain the following set covering
model, which is at least as tight as the linear relaxation of the OOEBPP, owing
to the convexification of constraints (4.3):

minimize
∑

j∈N

∑

k∈Kj

zk (4.10)

s.t.
∑

k∈Ki

zk +
∑

j>i

∑

k∈Kj

xk
ijzk ≥ 1 ∀i ∈ N (4.11)

0 ≤ zk ≤ 1 ∀j ∈ N , ∀k ∈ Kj (4.12)

In this reformulated model each variable zk, k ∈ Kj corresponds to a feasible
column, that is a feasible set of items packed into a same bin j.

Problem formulation 47

4.2.2 A combinatorial lower bound

The linear relaxation of the model (4.10) - (4.12) can be strengthened by valid
inequalities, which also provides a valid lower bound.

Consider the last element of the ordered sequence N ; it is must obviously
be the overflow item of its bin. Consider now item N − 1; there are two cases:
either it fits into the same bin initialized by item N or it must initialize another
bin. The same argument can be repeated for each item down to the beginning of
N . Whenever the residual capacity left by items j + 1, . . . , N is not enough to
accommodate item j, a new bin must be initialized. The overflow item of the new
bin is selected as the one with maximum size among those in j, . . . , N and not yet
chosen as overflow items. After N iterations this procedure, called CB algorithm
(for Combinatorial Bounding) in the remainder, returns a valid lower bound to
the number of necessary bins. The pseudo-code of the procedure is reported in
Figure 4.1. If the set denoted with S in the pseudo-code is implemented with a
heap data structure, the complexity of the procedure is O(NlogN). It is not hard
to note that this combinatorial bound, although being simple and fast, dominates
the bound given by the LP relaxation of (4.1)–(4.5). In fact, the solution given by
CBA is feasible for this LP, but can obviously be non-optimal.

Since the CB algorithm considers the overall residual capacity rather than the
residual capacity of each bin, the lower bound may have no correspondence with
any feasible integer solution, because the items cannot be splitted. However it is
useful in two different ways: first, it provides a lower bound to be exploited in
the branch-and-price algorithm to prune the search tree; second, it yields a set
of items in correspondence of which the need of using an additional bin has been
detected. These are put in the set B in the pseudo-code.

This piece of information allows to strengthen the linear relaxation of the mas-
ter problem, by the following valid inequalities:

∑

k∈∪i≥B(t)Ki

zk ≥ t (4.13)

By B(t) we indicate the t-th item which has been inserted in set B according to
the insertion order. These inequalities state that at least t overflow items must
exist in the range [B(t), N].

An example. For the sake of clarity we illustrate the CB algorithm with a small
example. Consider an OOEBPP instance with 5 items, with size 16, 40, 40, 45 and
50. For each iteration of the CB algorithm, starting from item 5 down to item 1,
we report in Table 4.2.2 the considered item, its size, the number of bins currently
used, the overall residual capacity R, the set of overflow items T and the set B.

48 – Ch. 4 An optimization algorithm for the OOEBPP

Combinatorial Bounding Algorithm

Input: An ordered set N ; a weight ai for each i ∈ N ; a capacity coefficient b.
Output: A set of items B and a set of overflow items T ;

a lower bound on the number of bins |T |

begin

/* Initialization */
B:= ∅; T := ∅; R:= 0;
S:= ∅ /* the set of candidate overflow items */

for i:= |N | down to 1 do

S:= S ∪ {i}
if ai > R then

/* Choose the candidate of maximum weight */
j∗:= argmaxj∈S{aj}
B:= B ∪ {i}; T := T ∪ {j∗}; S:= S \ {j∗}
R:= R + (b − 1) + aj∗

R:= R − ai

/* Output */
return B, T and |T |

end

Figure 4.1: Computation of the combinatorial lower bound.

Item Size bins R T B
5 50 1 49 {5} {5}
4 45 1 4 {5} {5}
3 40 2 58 {5, 4} {5, 3}
2 40 2 18 {5, 4} {5, 3}
1 16 2 2 {5, 4} {5, 3}

Note that, when item 3 is considered, the residual capacity is equal to 4 and
it is not enough to accommodate the item. Hence a second bin is initialized: its
overflow item is item 4, while the current item, that is item 3, is inserted into the
set B. The final solution uses only two bins and it is not feasible. In this example
we have B(1) = 5 and B(2) = 3 and we can add to the master problem the two
inequalities:

∑

k∈K5

zk ≥ 1 and
∑

k∈K3∪K4∪K5

zk ≥ 2.

4.3 The pricing problem

The sets Kj of feasible columns have exponentially many elements; therefore a
restricted set covering problem (RSCP) is considered, and additional columns with
negative reduced cost are iteratively generated by need, with a column generation

The pricing problem 49

algorithm. For each given j ∈ N the pricing problem we need to solve to generate
a new column is a binary knapsack problem. Thus a negative reduced cost column
can be generated by solving at most |N | binary knapsack problems. However
solving a large number of knapsack problems to optimality to generate negative
reduced cost columns can be unnecessary, since we just need one negative reduced
cost column, provided it exists. Therefore we solve a pricing problem in which the
overflow item is not fixed, but rather it must be chosen in an optimal way, that is
we search for the column of minimum reduced cost for all possible choices of the
overflow item. The pricing problem is the following:

minimize π(λ, µ) =1 −
∑

i∈N

λi(yi +
∑

j>i

xij) −
∑

i∈N

yi

∑

t|B(t)≤i

µt

s.t.
∑

i<j

aixij ≤ (b− 1)yj ∀j ∈ N

∑

i∈N

yi = 1

yi ∈ {0, 1} ∀i ∈ N ,

xij ∈ {0, 1} ∀j ∈ N , ∀i < j

Coefficients λi are the non-negative dual variables associated to covering con-
straints (4.11) and coefficients µt are the non-negative dual variables associated to
valid inequalities (4.13).

After defining ρi = λi +
∑

t|B(t)≤i µt, the pricing problem can be rewritten in
an equivalent way as follows:

minimize π(λ, µ) =1 −
∑

i∈N

(λixi + ρiyi) (4.14)

s.t.
∑

i∈N

aixi ≤ b− 1 (4.15)

∑

i∈N

yi = 1 (4.16)

xi +
∑

j≤i

yj ≤ 1 ∀i ∈ N (4.17)

xi, yi ∈ {0, 1} ∀i ∈ N

In this model each binary variable yi is equal to 1 if and only if item i is assigned to
the bin and it is the overflow item, while each binary variable xi is equal to 1 if and
only if item i is assigned to the bin and it is not the overflow item. The capacity
constraint (4.15) only concerns the x variables. Constraints (4.17) impose the
given ordering to the items: if item i is assigned to the bin and is not the overflow

50 – Ch. 4 An optimization algorithm for the OOEBPP

item, then no item j with j ≤ i can be the overflow item. Constraint (4.16) states
that there must be exactly one overflow item in the bin; it is implied by constraints
(4.17) whenever, as in our case, ρi ≥ λi ∀i ∈ N .

We call this subproblem the ordered open-end knapsack problem (OOEKP).
For analogy with the binary knapsack problem, we state the objective function
(4.14) in maximization form as follows:

π(λ, µ) = 1 − max {
∑

i∈N

(λixi + ρiyi)}

In the next section we discuss the exact optimization of the OOEKP.

4.4 A pricing algorithm

For each choice of the overflow item a generic instance of the OOEKP reduces to
an instance of the binary knapsack problem (KP), that is a well studied problem
and can be effectively solved by a number of existing algorithms [74] [55].

The relation with the KP can be exploited even further: in principle the
OOEKP can be solved in O(|N |b) computing time using standard recursion: for
i = 1 . . . |N | and w = 0 . . . b− 1 compute

fi,w =

{
fi−1,w if w < ai

max {fi−1,w, fi−1,w−ai
+ λi} otherwise

where f0,w:= 0 for all w = 0 . . . (b− 1). Then, an OOEKP optimum can be found
as

π(λ, µ) = 1 − max i∈N{ρi + {fi−1,b−1}}

and the corresponding solution can be reconstructed by simply keeping a set of
pointers during the computation of the fi,w values.

However, this approach is often impractical: more sophisticated and effective
techniques have been devised for the KP.

The algorithm we present here performs an implicit search to identify the op-
timal overflow item, that is the overflow item of an optimal solution. We propose
fast bounding and problem-reduction procedures, coupling them with effective al-
gorithms for the KP. Nevertheless, the worst case time complexity of our procedure
is worse than that of the dynamic programming approach, since it requires the op-
timization of a number of KPs that is bounded by N . However, we experimentally
observed that the number of KPs to be optimized if often very small, and the
computing time of our approach is in practice one order of magnitude better with

A pricing algorithm 51

respect to the dynamic programming procedure.

General description. The algorithm initializes a best incumbent lower bound
zLB and a set of candidate overflow items S. Then the algorithm computes up-
per bounds to the value of the OOEKP for each possible choice of the overflow
item. These upper bounds are used both to guide the search in a best-first-search
fashion and to terminate the algorithm. After that the algorithm iteratively se-
lects a “most promising” overflow item according to its associated upper bound, it
solves a corresponding binary knapsack problem instance and this yields a feasible
OOEKP solution. The information provided by the optimal solution of the binary
knapsack instance is also exploited by additional fathoming rules to reduce the
number of possible candidate overflow items to be considered.

Preprocessing and initialization. Consider the range {1, . . . , l} such that∑l−1
j=1 aj ≤ b and

∑l
j=1 aj > b. The optimal solution of the OOEKP involving

only items in {1, . . . , l} can be computed in linear time since the capacity con-
straint is inactive, when the overflow item is not after position l in the given
sequence. This optimal value is kept as an initial lower bound zLB and all items
in the range {1, . . . , l} are no longer considered as candidate overflow items.

Reduction. Some more items that cannot be optimal overflow items are identified
as follows. For each pair of items i and j with i < j such that ρi ≤ ρj, item i can
be discarded from the set S of candidate overflow items: given a feasible OOEKP
solution with i as the overflow item, a non-worse feasible OOEKP solution can be
obtained by simply replacing item i with item j, since feasibility is not affected
by the size of the overflow item and the objective function value does not decrease.

Notation. In the remainder we use the following notation. With KPj we indicate
the optimal value of the binary knapsack problem instance in which the only items
available are those in the range [1, . . . , j − 1], with the capacity of the knapsack
equal to b− 1.

KPj = max {

j−1∑

i=1

λixi :

j−1∑

i=1

aixi ≤ b− 1, xi ∈ {0, 1} ∀i = 1, . . . , j − 1}

We indicate by LKPj the optimal solution of the linear relaxation of KPj:

LKPj = max {

j−1∑

i=1

λixi :

j−1∑

i=1

aixi ≤ b− 1, 0 ≤ xi ≤ 1 ∀i = 1, . . . , j − 1}

Obviously

LKPj ≥ KPj. (4.18)

52 – Ch. 4 An optimization algorithm for the OOEBPP

With OOEKPj we indicate the optimal value of the ordered open-end knapsack
problem in which item j has been selected to be the overflow item.

OOEKPj = KPj + ρj (4.19)

Step 1: computation of upper bounds. The first step of our algorithm consists
in computing an upper bound uj for each possible choice of the overflow item j ∈ S.
For the definitions above, the value

uj = LKPj + ρj (4.20)

is an upper bound to the optimal value of the OOEKP in which j is the overflow
item:

uj ≥ OOEKPj.

The computation of each upper bound uj requires the optimization of a con-
tinuous knapsack problem, that can be carried out in O(N) time [5]. However,
instead of solving N continuous knapsack subproblems, the optimal solution of
each of them can be obtained by suitably exploiting the structure of the optimal
solution of the previous one and this yields a significant reduction in computing
time. Consider the efficiency of each item j, that is the ratio ej = λj/aj and
consider a list T of the items sorted by non-increasing value of efficiency. This
is computed in O(NlogN) time. The optimal solution of a continuous knapsack
problem can be found by selecting items according to the efficiency order, until
an item w is found whose weight aw exceeds the residual capacity. In order to
fill the knapsack such item, called break item, is taken with a fractional value.
In our algorithm we scan the set of candidate overflow items S, starting from
item N down to item l and we scan the ordered list T from the most to the
least efficient item; assume LKPj has been computed and let i ∈ S be the next
candidate overflow item to be considered; assume w is the current break item in
the optimal solution of value LKPj. In the next iteration all items from j − 1
down to i become unavailable and the corresponding variables are fixed to 0. If
some of these variables are basic in the solution of previous continuous knapsack,
this yields some slack capacity available in the knapsack, which can be filled by
other items, which are chosen scanning T from w onward. When both lists have
been sorted in O(NlogN) time, the worst-case computational complexity of the
remaining procedure is O(N), because each element of each list is considered only
once.
Step 2: Search. In the second step at each iteration the most promising overflow
item k is chosen: k = argmaxj∈S{uj} where S is the set of candidate overflow items
not yet considered or fathomed. As soon as uk is found to be not greater than

Branch-and-price 53

the best incumbent lower bound zLB, the algorithm terminates. Once the most
promising item k has been selected, a binary knapsack problem is solved, where
the only available items are those with index less than k.

To solve binary knapsack problem instances we used Pisinger’s MINKNAP
algorithm [88], that is very fast and exploits the optimal solution of the continuous
relaxation both as a dual bound and to identify a good starting primal solution.
Every time we optimize a binary knapsack problem instance we get an optimal
value KPk: the corresponding solution can be exploited to skip the computation
of further binary knapsacks and to obtain feasible OOEKP solutions. Let such
solution be defined as

x = argmax{
k−1∑

i=1

λixi|
k−1∑

i=1

aixi ≤ b− 1, xi ∈ {0, 1} ∀i = 1, . . . , k − 1}

and h = max {i|xi = 1} be the first non-zero component in x. Then, for each
h < j ≤ k, the optimal OOEKPj solution is given by ρj +KPk and the items in
the range [h+ 1, . . . , k] can be discarded from the set S; in fact, fixing any yj = 1
with h < j ≤ k would not change the optimal solution of the remaining knapsack
problem.

The pseudo-code of the pricing algorithm is reported in Figure 4.2.

4.5 Branch-and-price

Branching strategy. Our branching rule is based on the x variables of the
compact formulation, since considering the z variables of (4.10)–(4.12) is not effec-
tive in this context. Once an optimal solution z∗ is obtained, A fractional solution
(x∗, y∗) in terms of the original variables can be found exploiting any fractional
solution z∗ of the reformulated model (and in particular, the optimal one), by
fixing x∗ij =

∑
j>i

∑
k∈Kj

xk
i z

∗
k, and y∗j =

∑
k∈Kj

z∗k for each i, j ∈ N .
We have adopted a two-levels branching strategy: in the first level search tree

branching decisions are taken on the yj variables, that is the overflow items of
the bins are chosen; the variable with y∗j value closer to 0.5 is selected and two
branches are considered: j is discarded from the set of candidate overflow items in
the first branch and fixed as an overflow item in the second branch. In the second
level search tree, where the number of bins has been defined and the overflow item
of each bin has been chosen, we need to solve a feasibility problem, that resembles
the decision version of a generalized assignment problem. In this second level
search tree we do a binary branching similar to the previous one, selecting the xij

variable whose value is closest to 0.5.
While the fixing of the xij variables only reduces the dimension of the subprob-

lems, the pricing algorithm should take into account the fixing of each yj variable.

54 – Ch. 4 An optimization algorithm for the OOEBPP

Optimization algorithm for the OOEKP

Input: An ordered set N ; for each j ∈ N , a weight aj , a prize λj for the insertion into the knapsack
and a prize ρj for being the overflow item; a capacity b.

Output: An optimal OOEKP solution (x∗, y∗) and its value zLB

begin

/* Initialization */
zLB:= −∞; l:= 1

while (
Pl−1

j=1 aj ≤ b − 1) do

if (
Pl−1

j=1 λj + ρl > zLB) then

zLB:=
Pl−1

j=1 λj + ρl

x∗
j := 1 ∀j < l; x∗

j := 0 ∀j ≥ l

y∗:= 0; y∗
l := 1

l:= l + 1
S:= {l, . . . , N}

/* Reduction */
for each i < j ∈ S do if (ρi ≤ ρj) then S:= S \ {i}

/* Compute upper bounds from linear relaxations */
for each j ∈ S do uj := ρj + LKPj

/* Examine all candidate overflow items */
repeat

/* Select the most promising candidate */
k:= argmaxj∈S{uj}
/* Termination test */
if (uk ≤ zLB) then goto end

/* Solve a KP, store the optimal solution and its value */

x:= argmax{
Pk−1

i=1 λixi :
Pk−1

i=1 aixi ≤ b − 1, xi ∈ {0, 1} ∀i = 1, . . . , k − 1}

KP (k):= max {
Pk−1

i=1 λixi :
Pk−1

i=1 aixi ≤ b − 1, xi ∈ {0, 1} ∀i = 1, . . . , k − 1}
for each j = k, . . . , N do xj := 0

/* Identify the best overflow item */
h:= k
while (xh = 0) do

if (KP (k) + ρh > zLB) then

/* Update the best incumbent primal solution */
zLB:= KP (k) + ρh;
x∗:= x
y∗:= 0; y∗

h:= 1
S:= S \ {h}; h:= h − 1

until (S = ∅)
end

Figure 4.2: Pseudo-code of the OOEKP optimization algorithm

In the first branch (yj = 0) the item j is dropped from the set S of candidate over-
flow items. In the second branch (yj = 1) two cases must be taken into account:
either j is not included in the optimal OOEKP solution, or j is the overflow item;
therefore, we first exclude j and solve the remaining OOEKP, then we fix j as
overflow item and solve the remaining KP, finally the best of these two solutions

Branch-and-price 55

Best-Fit Decreasing-Time heuristic

Input: An ordered set N ; a weight ai for each i ∈ N ; a capacity coefficient b.
Output: The set of overflow items is a feasible OOEBPP solution T , and the corresponding value |T |

begin

/* Initialization */
T := ∅; S:= ∅ /* the sets of overflow items and candidate overflow items */
for i ∈ N do J(i):= ∅ /* each J(i) is the set of items in the bin whose overflow item is i */

/* BFDT computation */
for i:= |N | down to 1 do

S:= S ∪ {i}
/*Compute the set of bins in which i can be inserted */
F (i):= {j ∈ T |

P
k∈J(j) ak + ai ≤ b − 1}

if F (i) = ∅ then

/* Initialize a new bin with the candidate of highest weight */
i∗:= argmaxi∈S{ai};
T := T ∪ {i∗}; S:= S \ {i∗}
if i∗ 6= i then

/* Remove i∗ from its bin; since ai ≤ ai∗ this becomes */
/* the bin with minimum residual capacity that can host i */
j∗:= j ∈ B|i∗ ∈ J(j);
J(j∗):= J(j∗) \ {i∗}; J(j∗):= J(j∗) ∪ {i}

else

j∗:= argmaxj∈F (i){
P

k∈J(j) ak}

J(j∗):= J(j∗) ∪ {i}

/* Output */
return T and |T |

end

Figure 4.3: Computation of the Best-Fit Decreasing-Time heuristic.

is taken.
The search tree is explored with a best-bound-first policy.

Primal bounds We have used three different heuristic algorithms to compute
primal feasible solutions to the OOEBPP quickly.

The first one is an adaptation of the well-known Best-Fit Decreasing-Height
(BFDH) approximation algorithm [67], that we indicate as Best-Fit Decreasing-
Time (BFDT) algorithm. The items are iteratively considered from item N down
to item 1 and in each iteration the current item is packed into the bin with the
minimum residual capacity among those which can accommodate it; if no bin can
receive the item, a new bin is initialized. The pseudo-code of this algorithm is
reported in Figure 4.3.

A second way of computing feasible solutions is a simple randomized version
of the BFDT algorithm, called r-BFDT, in which a set of r items is drawn from

56 – Ch. 4 An optimization algorithm for the OOEBPP

a uniform probability distribution and the corresponding bins are initialized. We
considered values of the r parameter ranging from 1 to b0.5

∑
j∈N aj/bc, and we

ran r-BFDT 10 times for each value of r.

A third heuristics consists in taking the current fractional solution of the linear
relaxation of the master problem and to round up some of the basic z variables,
until all rows are covered by columns associated to variables equal to 1. This
rounding is carried out in a greedy way, by considering the zk variables in order of
non-increasing fractional value.

The BFDT and r-BFDT heuristics are executed once, as a preprocessing step
of our algorithm. The primal solutions obtained in this way are also used to pop-
ulate the initial RSCP. Instead, the rounding heuristic is used once for each node
of the search tree, when the column generation process is over.

Columns deletion and re-insertion. We found useful to periodically remove
unpromising columns from the RSCP: each time a node of the search tree is con-
sidered, the columns in the RSCP whose reduced costs are higher than a threshold
are shifted into a separate pool. The reduced cost of each column is computed with
respect to the optimal dual solution on the ancestor node. In our implementation,
the removal threshold is computed as 1/(2N).

The columns pool is scanned at each column generation iteration: whenever a
column is found whose reduced cost is negative with respect to the current dual
solution, it is re-inserted in the RSCP. Each column is kept into the pool for up
to 6 checks.

Lagrangean bounds. The bound obtained by optimizing the set covering
reformulation can also be obtained by solving a Lagrangean dual problem [83],
when the set of constraints (4.2) is relaxed:

minimize
∑

j∈N

yj −
∑

i∈N

λi(yi +
∑

j>i

xij − 1)

s.t.
∑

i<j

aixij ≤ (b− 1)yj ∀j ∈ N

xij ∈ {0, 1} ∀i < j ∈ N

yj ∈ {0, 1} ∀j ∈ N

(4.21)

For each set of multipliers λ the problem decomposes into independent sub-

Branch-and-price 57

problems, one for each j ∈ N :

minimize (1 − λj)yj −
∑

i<j

λixij

s.t.
∑

i<j

aixij ≤ (b− 1)yj ∀j ∈ N

xij ∈ {0, 1} ∀i ≤ j ∈ N

yj ∈ {0, 1}.

Each subproblem j can be optimized as follows. First, variable yj is fixed to 1 and
the remaining binary knapsack problem is solved, obtaining a value πj(λ). Then,
if πj(λ) > 0, a better solution is found by fixing yj to 0, and by consequently
setting xij = 0 for each i < j. Hence, for any choice of the λi multipliers, a valid
lower bound ω(λ) for OOEBPP is given by:

ω(λ) =
∑

i∈N

λi +
∑

j∈N

min {πj(λ), 0}

It is worth noting that the main advantage of our pricing method is actually to
avoid the computation of such a large number of knapsack problems, since in the
OOEKP algorithm we implicitly consider all these πj values to identify the one
with minimum value. However, a lower bound ω̄(λ) on ω(λ) can be obtained by
substituting any πj(λ) value with a corresponding lower bound π̄j(λ) . Therefore,
we initially set the π̄j(λ) values to the uj bounds, which are readily available
after the computation of a OOEKP; then, whenever a binary knapsack problem
is solved in order to obtain a KPj value during the computation of an OOEKP, a
corresponding set of π̄j(λ) bounds can be updated. Finally, the information drawn
from the combinatorial bound can be used to strengthen ω̄(λ): a set of inequalities
for the compact formulation analogous to constraints (4.13) is the following:

∑

i≥B(t)

yi ≥ t ∀t = 1 . . . |B|. (4.22)

A dual bound ω̄(λ) can be computed as follows. First, the best set of overflow
items that satisfy constraint (4.22) is identified; then further items with negative
π̄j(λ) value are selected. This procedure is detailed in Figure 4.4. Finally, ω̄(λ) is
calculated as

ω̄(λ) =
∑

i∈N

λi +
∑

j∈T

π̄j(λ)

Whenever, during the column generation iterations, the difference between the
highest ω̄(λ) value encountered and the RSCP optimal value is less than 10−6, the

58 – Ch. 4 An optimization algorithm for the OOEBPP

Select overflow items:

Input: A set of π̄j(λ) values
Output: A set T of selected overflow items

begin

T = ∅
for each t ∈ B do

j∗(t):= argmaxj∈N\T ,j≥B(t){π̄j(λ)}
T := T ∪ {j∗(t)}

T := T
S
{j ∈ N|π̄j(λ) < 0}

end

Figure 4.4: Finding the best valid selection of overflow items

column generation process is terminated, and such Lagrangean bound is kept as a
lower bound. Although for each set of multipliers the inequalities (4.22) may help
in strengthening the Lagrangean bound, for the optimal choice of multipliers (that
is, at the end of the column generation process), this Lagrangean bound never
exceeds the value of the set covering LP optimal solution. In fact, once the πj(λ)
values are computed or approximated, the remaining subproblem can be solved in
polynomial time.

Multiple Pricing. The equivalence with Lagrangean relaxation is exploited also
to search for different sets of columns at each column generation iteration. In fact,
it is a common practice in Lagrangean-relaxation based algorithms to iteratively
improve a dual solution with subgradient optimization [47]. Once again, in our
case the subgradients are not readily available, since the computation of several
binary knapsack problems is avoided. However, the solution corresponding to each
LKPj value, that is computed in the preprocessing step of the OOEKP algorithm,
can be used as an approximation of the solutions of the KPj value, whenever the
exact optimization of the KP is not carried out during the OOEKP computation.

At each column generation step, we initialize the λi values with the current set
of dual variables; we perform at most 50 subgradient iterations, starting with a
dumping parameter value of 2.0 and halving it every 10 not improving iterations.

Whenever a set of multipliers is found, that improves the ω̄(λ) bound found
in the earlier subgradient iterations, the column corresponding to the OOEKP
optimal solution is inserted in the RSCP.

This technique yields substantial improvements in the convergence rate of the
column generation algorithm, and helps in avoiding stability problems.

Variable Fixing with Lagrangean Penalties. We also used the π̄j(λ) values

Computational results 59

in a variable fixing procedure. Our aim is to evaluate the effect of complementing
the selection of each overflow item.

Therefore, consider each set of items j ≥ B(t) for t = 1 . . . |B|. When the corre-
sponding constraint (4.22) is not active, the effect of complementing can trivially
be done by adding or subtracting a π̄j(λ) value from the bound. On the opposite,
when this constraint is active, the dropping of an overflow item requires the selec-
tion of another one in the corresponding interval; in a similar way, the selection of
an additional overflow item may allow the dropping of the least profitable selected
one.

Hence, for each t, let πBO(t) be the minimum π̄j(λ) value between the unse-
lected items j ∈ N \T , j ≥ B(t), and πWI(t) be the maximum π̄j(λ) value between
the selected items j ∈ T , j ≥ B(t) (BO stands for ‘Best Out’ and WI stands for
‘Worst In’). If |{j|j ∈ T , j ≥ B(t)}| > t, set πBO(t) = πWI(t) = 0, if πWI(t) < 0
set πWI(t) = 0.

Then, for each t = 1, . . . , |T |

• for each j ≥ B(t) such that j ∈ N \ T , if dω̄(λ) + π̄j(λ) − πWI(t)e ≥ UB
then j can be discarded from the set of candidate overflow items (yj = 0),

• for each j ≥ B(t) such that j ∈ T , if dω̄(λ) − π̄j(λ) + πBO(t)e ≥ UB then j
can be fixed as an overflow item (yj = 1),

since in both cases, the opposite choice would push the lower bound above the
upper bound, causing the fathoming of the node.

4.6 Computational results

We tested our branch-and-price algorithm on two datasets proposed in the liter-
ature for bi-dimensional packing problems. The first dataset is described in [67]
and consists of 5 classes of instances: BENG (10 instances), CGCUT (3 instances),
GCUT (4 instances), HT (9 instances) and NGCUT (12 instances). The second
dataset is described in [68] and consists of 500 instances, divided into 10 classes of
50 instances, named MV and BW. In bi-dimensional packing problems each item
has both a width and a height and the aforementioned datasets contain instances
with different types of correlation between these two parameters. In order to ob-
tain OOEBPP instances, we interpreted the height of each item as a “time-stamp”:
if item i has a smaller height than item j in the bi-dimensional packing instance,
then item i precedes item j in the corresponding OOEBPP instance. To obtain a
total ordering, we broke the ties according to the order given in the original data
file.

60 – Ch. 4 An optimization algorithm for the OOEBPP

Our branch-and-price algorithm was implemented in C++. CPLEX 8.1 was
used to solve the LP relaxations. The code was compiled with the GNU CC version
3.2.2, by setting full optimizations. Our computational results were obtained on a
Linux workstation equipped with a Pentium IV 1.6GHz processor and 512MB of
RAM. We imposed to every test a time limit of one hour.

Dual bounds. In a first set of test, we compared the tightness of the dual bounds
proposed in the paper. In tables 4.1(a) and 4.1(b) we report our results on the
first and second dataset respectively. Each table is made by six horizontal blocks:
in the first one we include the class of instances, while each of the subsequent five
blocks refers to the dual bounding technique indicated in the leading row. We
denote the combinatorial bound with CB, the linear relaxation of the compact for-
mulation with LP, the relaxation given by the set covering formulation, neglecting
constraints (4.13) by CG and the relaxation given by the set covering formulation
when the (4.13) inequalities are introduced with MIX. Each entry of the table
represents the average value of the instances in a class.

For CB we report the average dual gap, computed as the difference between
the optimal value and the value of the bound, divided by the optimal value. We do
not report the computation time, because the effort for computing CB and LP for
these instances is negligible, and the computation of the other two bounds never
required more than a few seconds.

The CG bound is always tight: on the first dataset no duality gap was observed
when rounding the value of the CG bound up to the nearest integer; on the second
dataset, a gap was found on three classes only, and it was always smaller than
0.2%. The competitor is CB: it is tighter and faster to compute than LP; it gives
rather tight bounds (except for class BW06, where the duality gap is more than
11%). In class MV02 it is better than the CG bound too. It is worth noting that
combining CG and CB techniques in the MIX relaxation yields sometimes (e.g.
on a set of GCUT instances) a bound that is tighter than the best of two.

Primal bounds. In tables 4.2(a) and 4.2(b) we report the cost of the feasible
solutions found by three heuristics at the root node, for the instances in the first
and second dataset respectively. These tables consist of four blocks: the first one
indicates the class of instances, while the subsequent blocks refer to the BFDT,
randomized BFDT and rounding heuristics respectively. Each entry indicates the
average gap between the value of the heuristic solution and the optimal value, di-
vided by the optimal value. Randomizing the BFDT heuristic yields better primal
bounds and allows to obtain a good initial RSCP. The rounding heuristic yielded
essential improvements only for instances in the class GCUT of the first dataset.

Computational results 61

Optimal solutions. Finally, we performed a set of tests on the effectiveness
of branch-and-price for solving the OOEBPP to optimality, comparing it with
CPLEX 8.1 used as an IP solver.

A version of the branch-and-price algorithm using the combined bound was
able to reduce the duality gap very quickly on all instances; however, the relaxed
solutions were highly fractional, and it was hard for a heuristic to find the opti-
mal solution. In the most successful version of our method the inequalities (4.13)
were dropped and each µt term fixed to 0. Instead, both the CG and CB bounds
were computed at each node of the branching tree, and the tightest of them was
considered. In this way optimal solutions were found earlier, and less nodes of the
branching trees were explored to prove optimality. Therefore we report our com-
putational results only for this last implementation. All the CPLEX parameters
were kept at the default values.

The results of our comparison on the first and second datasets are reported in
tables 4.3(a) and 4.3(b). In the first column we indicate the instance class name;
then, each table has a block for the results of CPLEX and a block for those of
branch-and-price. For the first dataset we report the average gap between the
value of best solution found and the optimal value, divided by the optimal value
(“primal-opt gap”), and the time required to obtain a proven optimal solution
(“time”). Both methods complete the computation within the resource limits, but
branch-and-price was almost always faster than CPLEX; in particular on classes
BENG and GCUT it was two orders of magnitude faster. In Table 4.3(b) related
to the second dataset, we indicate also the number of solved instances in each
class (“solved instances”). Branch-and-price solved all the instances but 4, while
CPLEX failed on 30 instances. CPLEX exceeded the time limit in 16 cases, and
had memory overflow problems in the remaining 14; branch-and-price failures were
all due to memory overflow. The remaining instances were solved on the average
in less than one minute. Hence, it seems that CPLEX failed each time a “hard”
instance was encountered, while branch-and-price showed a much more robust
behavior. Finally for the classes in which both methods solved all the instances,
branch-and-price was always faster and it was effective also on instances that
CPLEX failed to optimize.

6
2

–
C

h
.

4
A

n
o
p
ti

m
iz

a
ti

o
n

a
lg

o
r
it

h
m

fo
r

th
e

O
O

E
B

P
P

CB LP CG MIX
dual gap ceil dual gap dual gap ceil dual gap dual gap ceil dual gap dual gap

BENG 0.00% 0.00% -7.24% 0.00% -7.23% 0.00% 0.00%
CGCUT 0.00% 0.00% -6.26% 0.00% -3.50% 0.00% 0.00%

GCUT -5.00% -5.00% -11.51% 0.00% -3.33% 0.00% -2.50%
HT 0.00% -2.78% -11.40% 0.00% -11.05% 0.00% 0.00%

NGCUT -4.71% -6.10% -20.97% 0.00% -11.30% 0.00% 0.00%
Average -2.01% -3.11% -12.93% 0.00% -8.72% 0.00% -0.26%

(a)

CB LP CG MIX
dual gap ceil dual gap dual gap ceil dual gap dual gap ceil dual gap dual gap

MV01 -2.95% -2.95% -5.69% 0.00% -2.78% 0.00% -1.16%
MV02 0.00% -0.13% -7.13% -0.13% -7.02% 0.00% 0.00%
MV03 -1.24% -1.40% -4.98% -0.11% -3.05% -0.11% -0.79%
MV04 0.00% 0.00% -6.68% 0.00% -6.46% 0.00% 0.00%
BW01 -1.39% -1.56% -5.56% -0.17% -3.00% -0.17% -1.00%
BW02 0.00% 0.00% -7.22% 0.00% -7.02% 0.00% 0.00%
BW03 -1.72% -2.42% -7.41% 0.00% -4.99% 0.00% -1.47%
BW04 -8.99% -9.37% -11.98% 0.00% -1.07% 0.00% -1.04%
BW05 -11.72% -11.78% -14.89% 0.00% -1.72% 0.00% -1.72%
BW06 -0.18% -0.18% -5.32% 0.00% -4.80% 0.00% -0.17%

Avg. -2.82% -2.98% -7.69% -0.04% -4.19% -0.03% -0.73%

(b)

Table 4.1: Comparison of dual bounds

C
o
m

p
u
ta

tio
n
a
l
r
e
s
u
lts

6
3

BFDT r-BFDT CG
opt. gap opt. gap opt. gap

BENG 0.00% 0.00% 0.00%
CGCUT 5.88% 1.96% 1.96%

GCUT 8.33% 8.33% 1.67%
HT 0.00% 0.00% 0.00%

NGCUT 0.00% 0.00% 0.00%
Average 1.34% 1.03% 0.33%

(a)

BFDT r-BFDT CG
primal gap primal gap primal gap

MV01 2.59% 1.96% 1.68%
MV02 1.07% 0.89% 0.89%
MV03 6.88% 5.90% 5.57%
MV04 4.28% 4.01% 4.01%
BW01 7.93% 6.58% 5.34%
BW02 2.61% 1.61% 1.61%
BW03 5.06% 3.67% 3.67%
BW04 5.84% 1.95% 1.86%
BW05 6.63% 2.04% 1.55%
BW06 8.10% 6.11% 6.11%

Avg. 5.10% 3.47% 3.23%

(b)

Table 4.2: Comparison of primal bounds

6
4

–
C

h
.

4
A

n
o
p
ti

m
iz

a
ti

o
n

a
lg

o
r
it

h
m

fo
r

th
e

O
O

E
B

P
P

CPLEX branch-and-price
primal-opt gap time(s) primal-opt gap time (s)

BENG 0.00% 1.73 0.00% 0.08
CGCUT 0.00% 0.09 0.00% 0.04

GCUT 0.00% 100.85 0.00% 1.65
HT 0.00% 0.04 0.00% 0.02

NGCUT 0.00% 0.02 0.00% 0.03
Avg 0.00% 11.09 0.00% 0.21

(a)

CPLEX branch-and-price
solved instances primal-opt gap time (s) solved instances primal-opt gap time (s)

MV01 47 0.00% 16.75 50 0.00% 2.67
MV02 50 0.00% 0.50 50 0.00% 0.02
MV03 45 0.32% 14.73 50 0.00% 20.01
MV04 50 0.00% 11.53 50 0.00% 9.83
BW01 41 0.75% 45.99 50 0.00% 5.49
BW02 47 0.49% 0.97 50 0.00% 14.05
BW03 48 0.19% 38.91 49 0.08% 50.91
BW04 48 0.00% 7.30 50 0.00% 1.37
BW05 48 0.00% 1.98 50 0.00% 0.42
BW06 46 0.42% 46.09 47 0.48% 29.77

Avg. 470 0.22% 18.47 496 0.06% 13.45

(b)

Table 4.3: Solving the OOEBPP to proven optimality

Part II

Assignment Problems

In the next chapter we consider the multilevel generalized assignment problem,
a variation of the generalized assignment problem in which a set of tasks has to
be assigned to a set of agents, that can work at different efficiency levels. In the
general framework of partitioning problems, this can be considered the opposite of
packing problems: there are no fixed costs for activating each agent, instead an
allocation cost incurs each time a task is assigned to an agent.

In this case, the set of tasks has no special structure. However, the particular
composition of allocation patterns can be exploited in the column generation rou-
tine: the pricing problem can be solved as a multiple-choice knapsack problem, for
which a number of very effective codes exist.

Instead, the main challenge in this problem is the design of effective primal
heuristics and branching rules.

68 – Ch. 4

Chapter 5

A branch-and-price algorithm for
the multilevel generalized
assignment problem

The multilevel generalized assignment problem (MGAP) is a variation of the gener-
alized assignment problem, in which agents can execute tasks at different efficiency
levels with different costs. We present a branch-and-price algorithm that is the
first exact algorithm for the MGAP. It is based on a decomposition into a mas-
ter problem with set partitioning constraints and a pricing subproblem that is a
multiple choice knapsack problem. We report on our computational experience
with randomly generated instances with different numbers of agents, tasks and
levels and with different correlations between cost and resource consumption for
each agent-task-level assignment. Experimental results show that our algorithm
is able to solve instances larger than those of the maximum size considered in the
literature to proven optimality.

5.1 Introduction

The multilevel generalized assignment problem (MGAP) is a variation of the well-
known generalized assignment problem (GAP). The GAP consists of assigning
tasks to agents with limited capacity, so that each task is assigned to an agent
and a capacity constraint is satisfied for each agent. In the MGAP each task-
agent assignment can be made at different levels, implying both different costs (or
revenues) and different amounts of resource used.

The MGAP arises in the context of large manufacturing systems: it was first
described in [44] as a task allocation problem in a real manufacturing environment.

70 – Ch. 5 A B&P algorithm for the MGAP

The problem arises when machines performing manufacturing operations on jobs
can work at different “levels”: this means that the same job can be executed,
for instance, with more or less accuracy, in more or less time or with a larger or
smaller energy consumption. Obviously the outcome in terms of product quality or
added value also depends on the level on which the manufacturing operations have
been done. Levels may also represent different lot sizes as in the original paper
by Glover et al.. Besides its application in production planning contexts, due to
its combinatorial structure the MGAP can also appear as a subproblem in other
contexts such as load balancing in clusters for high performance computing, multi-
facility location and multi-vehicle routing problems. For this reason we prefer here
the general terms “task” and “agent” instead of “job” and “machine”, that are
more specific to production scheduling optimization. Since it is a generalization of
the GAP, the MGAP is NP-hard and even the problem of determining whether
a feasible solution exists is NP-complete.

[64] proposed a tabu search algorithm for the MGAP. They reported on results
obtained with instances involving up to 40 tasks, 4 agents and 4 efficiency levels.
More recently [39] presented two heuristic algorithms, tested on larger instances
with up to 200 tasks, 30 agents and 5 efficiency levels. No ad hoc algorithm has
been presented so far for the exact optimization of the MGAP. The only attempts
to obtain optimal solutions have been made with general purpose optimization
packages, but the very large number of binary variables allows to solve only prob-
lem instances of small size. [85] proposed to add logic cuts to strengthen the initial
formulation; in this way they could solve problem instances with up to 60 tasks,
30 agents and 2 levels to optimality using CPLEX.

Branch-and-price is an effective mathematical programming technique to solve
optimization problems like the GAP and the MGAP, requiring the partition of
a set of elements into constrained subsets. A branch-and-price algorithm for the
GAP was presented by [95].

In this paper we present a branch-and-price algorithm based on a decomposition
of the MGAP into a master problem and a pricing subproblem; the former is a
set partitioning problem, while the latter is a multiple choice knapsack problem.
We illustrate a branching strategy that is both effective at improving the dual
bound and compatible with the combinatorial structure of the pricing subproblem.
Our algorithm could solve problem instances larger than those of the maximum
size considered in the literature (400 tasks, 80 agents, 4 levels). We compared
the branch-and-price algorithm with CPLEX with and without logic cuts, solving
random instances with different correlations between cost coefficients and resource
requirements.

The paper is organized as follows: in Section 5.2 we introduce the basic formu-
lation of the MGAP and its set partitioning reformulation; in Section 5.3 we de-

Formulations 71

scribe the branch-and-price algorithm and we discuss some implementation details;
in Section 5.4 we present our experimental results and we draw some conclusions.

5.2 Formulations

Consider a set of agents N = {1 . . . N} and a set of tasks M = {1 . . .M}, such
that each task must be assigned to an agent. Each agent i ∈ N can execute each
task j ∈ M at different efficiency levels k ∈ K = {1 . . . K}. Following [64] we
formulate the MGAP as a minimization problem.

min
∑

i∈N

∑

j∈M

∑

k∈K

cijkxijk (5.1)

s.t.
∑

i∈N

∑

k∈K

xijk = 1 ∀j ∈ M (5.2)

∑

j∈M

∑

k∈K

aijkxijk ≤ bi ∀i ∈ N (5.3)

xijk ∈ {0, 1} ∀i ∈ N , ∀j ∈ M, ∀k ∈ K (5.4)

This model will be indicated as the ‘natural formulation’ of the MGAP. Binary
variables x are assignment variables: xijk = 1 if and only if task j ∈ M is assigned
to agent i ∈ N at level k ∈ K. Each task j ∈ M implies a resource consumption
aijk ≥ 0 when it is assigned to agent i ∈ N at level k ∈ K; each agent i ∈ N
has an amount bi of available resource. Each agent-task-level assignment implies a
cost cijk ≥ 0. Set partitioning constraints (5.2) impose that each task is assigned
to one agent at one efficiency level. Capacity constraints (5.3) impose the resource
restriction for each agent. The objective is to minimize the sum of allocation costs.

Usually the following assumption holds in real cases: for each agent-task pair
(i, j) and for each two different levels k and h with k < h, we assume aijk < aijh and
cijk > cijh. When this property does not hold, some assignments are dominated
and the corresponding variables can be fixed to 0 by a trivial preprocessing. It
is clear that the correlation between the coefficients plays an important role in
making an instance easy or hard to solve. This is explained in more detail in
Section 5.4.

Consider the relaxation in which constraints (5.2) are replaced by

∑

i∈N

∑

k∈K

xijk ≥ 1 ∀j ∈ M (5.5)

Any feasible solution of (5.1) (5.5) (5.3) (5.4) in which some task is assigned more
than once can be transformed into a feasible solution of (5.1) (5.2) (5.3) (5.4) by

72 – Ch. 5 A B&P algorithm for the MGAP

simply deleting the assignments in excess and this does not increase the value of
the objective function. Therefore this relaxation has the same optimal value of
the natural formulation.

We introduce here an alternative formulation of the MGAP, which is viable for
a branch-and-price approach. Let a duty d for agent i be an assignment of tasks to
agent i, that is a vector xd

i
= (xd

i11, . . . , x
d
iMK), where each component xd

ijk takes
value 1 if task j is assigned to agent i at efficiency level k, and 0 otherwise. Let
Di = {x1

i , . . . , x
Di

i } be the set of all feasible duties for agent i ∈ N , i.e. the set of
vectors (xd

i11, . . . , x
d
iMK) such that

∑

j∈M

∑

k∈K

aijkx
d
ijk ≤ bi

∑

k∈K

xd
ijk ≤ 1 ∀j ∈ M

xd
ijk ∈ {0, 1} ∀j ∈ M ∀k ∈ K

Let zd
i be a binary variable indicating whether a duty d ∈ Di is selected for agent

i ∈ N . The MGAP can be reformulated as follows.

min
∑

i∈N

∑

d∈Di

(
∑

j∈M

∑

k∈K

cijkx
d
ijk) z

d
i (5.6)

s.t.
∑

i∈N

∑

d∈Di

(
∑

k∈K

xd
ijk) z

d
i = 1 ∀j ∈ M (5.7)

∑

d∈Di

zd
i = 1 ∀i ∈ N (5.8)

zd
i ∈ {0, 1} ∀i ∈ N ∀d ∈ Di (5.9)

We remark that each xd
ijk term represents a constant in this model, therefore

expressions (5.6) and (5.7) are linear. In this master problem (MP for short)
constraints (5.7) guarantee that each task is assigned to one agent and constraints
(5.8) guarantee that one duty is selected for each agent. Both of them can be
replaced by inequalities. Partitioning constraints (5.7) can be relaxed into covering
constraints

∑

i∈N

∑

d∈Di

(
∑

k∈K

xd
ijk) z

d
i ≥ 1 ∀j ∈ M (5.10)

for the same reason outlined above. Since the empty duty (i.e. a duty with no
assignments) is always feasible for each agent, we can replace constraints (5.8)
with

∑

d∈Di

zd
i ≤ 1 ∀i ∈ N (5.11)

Formulations 73

We consider a master problem with inequality constraints (5.10) and (5.11) instead
of (5.7) and (5.8) because this makes easier for the simplex algorithm to find
feasible solutions when solving its linear relaxation.

In general each set Di includes an exponential number of assignments and
therefore the master problem has an exponential number of variables. We solve the
linear relaxation of the master problem (LMP for short) by column generation: we
consider a restricted linear master problem (R-LMP) including only some subsets
D′

i of columns, that is

min
∑

i∈N

∑

d∈D′
i

(
∑

j∈M

∑

k∈K

cijkx
d
ijk) z

d
i (5.12)

s.t.
∑

i∈N

∑

d∈D′
i

(
∑

k∈K

xd
ijk) z

d
i ≥ 1 ∀j ∈ M (5.13)

−
∑

d∈D′
i

zd
i ≥ −1 ∀i ∈ N (5.14)

zd
i ≥ 0 ∀i ∈ N ∀d ∈ D′

i (5.15)

where constraints zd
i ≤ 1 have been removed since they are implied by constraints

(5.14).
Let λ ∈ RM

+ and µ ∈ RN
+ be the vectors of non-negative dual variables corre-

sponding to constraints (5.13) and (5.14) respectively. The reduced cost of duty d
for agent i is

r̄d
i =

∑

j∈M

∑

k∈K

cijkx
d
ijk −

∑

j∈M

λj (
∑

k∈K

xd
ijk) + µi

To find columns with negative reduced cost we must solve the following pricing
problem for each agent i ∈ N :

min r̄d
i =

∑

j∈M

∑

k∈K

(cijk − λj)x
d
ijk + µi (5.16)

s.t.
∑

j∈M

∑

k∈K

aijkx
d
ijk ≤ bi (5.17)

∑

k∈K

xd
ijk ≤ 1 ∀j ∈ M (5.18)

xd
ijk ∈ {0, 1} ∀j ∈ M, ∀k ∈ K (5.19)

that is a multiple choice knapsack problem (MCKP). Though being NP-hard, the
MCKP is well-solvable in practice [74] [55] and this is a reason that makes our
column generation approach to the MGAP particularly appealing.

74 – Ch. 5 A B&P algorithm for the MGAP

The main computational advantage of the reformulation presented above is
that the bound given by the linear relaxation of model (5.6) (5.10) (5.11) (5.9)
dominates that given by the linear relaxation of model (5.1) (5.5) (5.3) (5.4). This
is due to the convexification of constraints

∑

j∈M

∑

k∈K

aijkx
d
ijk ≤ bi

∑

k∈K

xd
ijk ≤ 1 ∀j ∈ M.

The MCKP polyhedra defined by these constraints do not possess the integral-
ity property, since the MCKP is NP-hard. Therefore their convexification yields a
lower bound which is guaranteed to be greater than or equal to the linear program-
ming lower bound [76]. In our experiments (see Table 5.1, Section 5.4), the lower
bound provided by the reformulation used in our branch-and-price algorithm was
actually tighter than the linear programming bound of the original model, which
is used by general-purpose MIP solvers.

5.3 A branch-and-price algorithm

5.3.1 Lower bound and termination

We exploit the equivalence between Lagrangean relaxation and Dantzig-Wolfe de-
composition in the column generation termination test: the terms µi in the pricing
problem (5.16)–(5.19) are not relevant in the definition of the optimal solution;
hence at each iteration t of column generation the current values of the dual vari-
ables λt are used as multipliers to compute a valid lower bound:

ωt = −
∑

i∈N

τ t
i +

∑

j∈M

λt
j

where τ t
i is the optimal value of the pricing subproblem for agent i. In this way

a sequence of lower bounds is computed during column generation. This often
allowed to prune the current node of the search tree even before column generation
was over. When the gap between the optimal value of the R-LMP at iteration t
and the best incumbent lower bound is smaller than a predefined threshold, the
column generation algorithm is terminated and the best incumbent is kept as the
final lower bound. This is useful to avoid undesired tailing-off effects in the column
generation algorithm. In our experiments we fixed the threshold to 10−6.

A branch-and-price algorithm 75

5.3.2 Branching strategy

One of the most challenging aspects in the design of a branch-and-price algorithm
is the choice of the branching strategy: besides partitioning the solution space, a
good branching strategy must make infeasible the current optimal solution of the
R-LMP and it must not change the structure of the pricing subproblem. Many
authors have addressed the issue of the design of effective branching strategies in
branch-and-bound and branch-and-price algorithms. We refer the reader to [65]
and [8] for a detailed treatment of the subject.

We have devised a ternary branching rule, that consists of selecting a task j∗

which has a fractional assignment to two or more agents in the optimal solution
of the R-LMP: we forbid some of the assignments in each of two new subproblems
and we assign a task to a particular agent in the third subproblem.

For each task j ∈ M we consider the set Mj of agents for which there is a
fractional assignment

fij =
∑

d∈D′
i

∑

k∈K

xd
ijkz

d
i

in the optimal solution of the R-LMP and we select the agent i∗j = argmaxi∈N{fij},
corresponding to the highest fractional assignment for task j. The set Mj \ {i

∗
j}

is partitioned into two subsets M−
j and M+

j in the following way: the agents in
Mj\{i

∗
j} are sorted by non-increasing values of fij and they are inserted alternately

in M+
j and M−

j . Agent i∗j is inserted in both M+
j and M−

j . In this way we compute
a heuristic solution to a subset sum problem, in order to obtain a balanced partition
of the agents in Mj. The idea is to fix the same number of variables in each branch,
while trying to keep a balanced partition.

The set of agents to which task j is not assigned, M̂j, is also partitioned into

two subsets M̂−
j = {i ∈ N : fij = 0, i ≤ ı̃} and M̂+

j = {i ∈ N : fij = 0, i > ı̃},

where ı̃ is chosen in such a way that |M̂−
j | = d|M̂j|/2e.

The task j∗ selected for branching is the one for which |Mj| is maximum. In
case of ties we select the task for which the partition obtained is most balanced,
that is |

∑
i∈M−

j
fij −

∑
i∈M+

j
fij|/

∑
i∈Mj

fij is minimum.

Then we branch on j∗ by setting

•
∑

i∈M−
j∗

∪cM−
j∗

∑
k∈K xij∗k = 0 in the first branch,

•
∑

i∈M+
j∗

∪cM+
j∗

∑
k∈K xij∗k = 0 in the second branch and

•
∑

k∈K xi∗
j∗

j∗k = 1 in the third branch.

76 – Ch. 5 A B&P algorithm for the MGAP

The addition of constraints in the first and second branch forbids some assignments
but it does not change the structure of the pricing problem. The constraint in the
third branch is handled in a similar way: we forbid the assignment of task j∗ to
all agents but i∗j∗ and we state as equality the j∗–th constraint of set (5.18) in the
pricing problem for agent i∗j . This does not change the structure of the pricing
problem.

We adopt a mixed search strategy. The third branch is always explored first,
in a depth-first search fashion. This allows us to quickly re-optimize the LMP
and to search for good primal solutions deep in the search tree. The subproblems
in the first and second branch are stored as open nodes. Whenever an integer
solution is found, or the dual bound for the subproblem exceeds the value of the
best incumbent primal solution, the node with the lowest dual bound is retrieved
from the open nodes list, in a best-bound-first search fashion. A set of experiments
showed that this branching strategy is more effective than a standard two-branches
rule: first, the depth first exploration of the third branch helps in quickly finding
tight primal bounds; moreover, the assignment of the task to the most desirable
agent is forbidden in both the first two branches, and this helps in tightening the
corresponding bounds.

When all the variables in a relaxed solution have integer values, the optimal
task-level assignment is computed solving a MCKP for each agent.

5.3.3 Column generation

Pricing algorithm. We solve the binary MCKP to optimality by a modified
version of Pisinger’s algorithm [87], that combines dynamic programming with
bounding and reduction techniques. This algorithm was devised for the MCKP
with integer coefficients, while in our pricing subproblems the dual variables (as
well as the multipliers in Lagrangean relaxation) can be fractional. Therefore we
modified the algorithm in a way similar to that described in [18] and [15], that
is by relaxing the bounding tests so that the solution computed by the algorithm
may differ from optimality by at most a very small positive value (n · 10−9 in our
experiments, where n is the number of variables left outside the core). Since the
classical formulation of the MCKP has equality constraints, we add a set of N
dummy elements, each appearing in a constraint of the set (5.18), corresponding
to items with zero resource consumption and zero cost.

Columns management. At each iteration of the column generation algorithm
all columns which are generated with a negative reduced cost are inserted into the
R-LMP.

Whenever the number of columns exceeds a limit, we remove columns from
the R-LMP. According to statistical results (see subsection 5.4.2), this limit was

A branch-and-price algorithm 77

set to 3000 in our experiments. The removal criterion depends on three different
tests on the reduced cost of each column: so three types of removable columns are
considered.

• A column is red, if its reduced cost exceeds the gap between the best in-
cumbent feasible solution and the lowest lower bound among all the open
nodes of the search tree. In this case the column cannot belong to an optimal
solution of any node of the search tree and therefore it is deleted.

• A column is yellow, if its reduced cost exceeds the gap between the current
R-LMP value and the Lagrangean lower bound. In this case the column
cannot belong to the optimal solution of the current node; the column is
deleted from the R-LMP and is stored in a yellow pool Py.

• A column is green, if its reduced cost exceeds the same gap as above divided
by N . In this case the column can belong to the optimal solution of the
current node; it is removed from the R-LMP and is stored in a green pool
Pg.

Since every column is related to a particular agent, each pool is partitioned into N
sub-pools. The green pool Pg is scanned before executing the pricing algorithm,
also at the node of the search tree in which the deletion has occurred: if any
column with negative reduced cost is found, it is inserted into the R-LMP. The
columns in the yellow pool Py are considered for reinsertion only in subsequent
nodes of the search tree.

Finally, to avoid an excessive growth of the pools, the columns are erased from
the pool when their reduced cost is non-negative for a certain number of consec-
utive evaluations. This parameter was tuned to a value of 6 in our experiments
(see subsection 5.4.2).

Initialization. To guarantee that a feasible solution of the R-LMP exists in
each node of the search tree a dummy column is inserted into the initial R-LMP;
it corresponds to a duty in which all tasks are executed by a dummy agent with
infinite capacity. The cost of such a column is set to a very high value, that is∑

j∈M max i∈N ,k∈K{cijk}. Moreover eleven sets of columns are inserted into the
initial R-LMP at the root node, corresponding to primal solutions produced by
heuristic algorithms. A detailed description of this initialization is reported in
subsection 5.3.4.

In order to obtain a warm start, in each non-root node the R-LMP is initialized
with the feasible columns of the most recently solved node plus all columns from
the pools that have negative reduced cost when they are evaluated with the optimal
dual values of the father node.

78 – Ch. 5 A B&P algorithm for the MGAP

5.3.4 Primal bounds

The problem of finding a feasible solution to the MGAP is NP-complete. Never-
theless we search for feasible solutions at every node of the search tree, since the
availability of good primal bounds may considerably reduce the overall computing
time needed to reach a provably optimal solution.

We devised a fast rounding heuristic, and implemented both heuristic algo-
rithms MGAPH1 and MGAPH2 proposed by [39]. Furthermore, we propose a
new local search neighborhood (that we call SHIFT) and a modification of the
local search technique used for MGAPH2 (that we call SWAP). In the following
paragraphs we outline these algorithms and two local search techniques. Then we
describe how each heuristic is used in the branch-and-price algorithm.

For a formal description of MGAPH1 and MGAPH2 we refer to the original
paper, while the complete pseudo-codes of the rounding heuristic and the local
search algorithms are reported in the appendix.

Rounding heuristic. Let fij =
∑

d∈D′
i
(
∑

k∈K x
d
ijk)z

d
i be the (possibly frac-

tional) assignment of task j to agent i corresponding to the fractional R-LMP
solution defined by the zd

i variables. First, each task is assigned to the agent for
which fij is maximum. Let Ci be the resulting set of tasks assigned to agent i.
Second, for every agent i a MCKP with integer coefficients is solved to optimality
by the algorithm of Pisinger [87]. If a feasible solution can be found for each agent,
a primal bound for MGAP is obtained; otherwise the heuristic fails. We observed
that in almost all cases, this method finds a feasible solution.

MGAPH1. This algorithm consists of two steps. First, a super-optimal integer
solution is built with a greedy approach. For each task i, the agent-level assignment
(i, j, k) with the lowest cijk is selected, possibly violating some capacity constraint.
Then, a local search for feasible solutions is performed, shifting tasks from over-
loaded agents to agents with enough residual resources. The shift corresponding
to the minimum increase in the solution value per resource consumption unit is
iteratively selected.

MGAPH2. Consider gijk =
∑

d∈D′
i
xd

ijkz
d
i . In a construction step a value

rj = gi′jk′ − gi′′jk′′ is computed for each task, where (i′, j, k′) and (i′′, j, k′′) are the
first and the second agent-level assignment for task j that do not violate capacity
constraints with the highest gijk values. The task with the highest rj is selected,
and the (i′, j, k′) assignment is made. If, due to capacities, a task is found that
cannot be assigned to any agent, the heuristic fails. Otherwise, a local search is

Experimental analysis 79

performed, considering a neighborhood made of all solutions that can be obtained
from the current one by swapping two tasks assigned to different agents.

Local search. First, we propose a SHIFT procedure: the neighborhood of the
current solution is made of all solutions which can be obtained by shifting a task
from an agent to another or from an efficiency level to another. As detailed in the
appendix, we consider in turn each job, each agent and each efficiency level on that
agent. Whenever an improving move is found, it is immediately performed with
a first-improve policy. The cost of this local search step is O(NMK). Second, we
modified the pairwise swap neighborhood of [39], obtaining a procedure that we
call SWAP in the following way. We consider all solutions that can be obtained
by swapping two tasks assigned to different agents, or by swapping the efficiency
levels of two tasks assigned to the same agent. Only the best improving swap is
performed at each iteration.

Our rounding heuristic, coupled with the exploration of the SHIFT neighbor-
hood, was run at every column generation step. It yielded good upper bounds even
in the earlier iterations with a low computational cost, and this was useful also to
drive the column removal routine. MGAPH2 was used once for each node in the
search tree, using the optimal R-LMP solution. We modified the local search step
of MGAPH2 in the following way: first, we explore the SHIFT neighborhood and
the first improving shift is made, until no more improving shifts can be found; then
we explore the SWAP neighborhood and the best improving swap is made, until
no more improving swaps can be found. The exploration of the SHIFT and the
SWAP neighborhoods is iterated until no more improving moves can be made. The
neighborhood SWAP is considered only at the root node. The rounding heuristic
and the MGAPH1 algorithm were used in the initialization of the R-LMP: we
chose to generate 25 sets of columns using the former, randomly drawing each
fij in the interval [0, 1) (see subsection 5.4.2). The details on how the random
values were generated are reported in Section 5.4. Also columns corresponding to
infeasible solutions were added to the R-LMP.

5.4 Experimental analysis

5.4.1 Test Instances

We tested the branch-and-price algorithm on three classes of instances. Classes C
and D are generated using random generators as described by Martello and Toth
for the GAP, and extended to the MGAP, while class E is generated as proposed
by [64].

80 – Ch. 5 A B&P algorithm for the MGAP

• Class C: uncorrelated resource consumption and cost.
- aijk is taken as a random integer from a uniform distribution in [5, . . . , 25]
- cijk is taken as a random integer from a uniform distribution in [1, . . . , 40]
- bi = 0.8

∑
i∈N

∑
k∈K aijk/(NK)

• Class D: strongly correlated resource consumption and cost.
- aijk is taken as a random integer from a uniform distribution in [1, . . . , 100]
- cijk is taken as a random integer from a uniform distribution in [101 −
aijk, . . . , 121 − aijk]
- bi = 0.8

∑
i∈N

∑
k∈K aijk/(NK)

• Class E: resource consumption and cost correlated through an exponential
distribution.
- aijk is randomly generated as 1−10 ln[random(0, 1]] rounded to the nearest
integer with probability p, aijk = ∞ (that is, the assignment of task j to
agent i at level k is forbidden) with probability 1 − p
- cijk is randomly generated as 1000/aijk − 10 · random(0, 1] rounded to the
nearest integer
- bi = max {0.8

∑
i∈N

∑
k∈K

aijk/(NK),maxj,k{aijk}}.

By “random(0, 1]” we mean a random rational value uniformly drawn in the inter-
val (0, 1]. Such a random value was generated by drawing a random signed integer
and dividing this by the constant value “INT MAX” (on our machine, 4 bytes are
used for signed integers, and “INT MAX” is set to 231 − 1).

We generated 215 test instances in the following way. For each class we gen-
erated two problem sets, with M = 100 and M = 200 tasks. For M = 100 we
considered a number of agents N equal to 10, 20 and 30 and a number of levels
K equal to 3, 4 and 5; for M = 200 we considered a number of agents N equal to
15 and 30 and a number of levels K equal to 4 and 5. For the instances in class
E with M = 100 the probability p of allowing an agent-task-level assignment was
fixed to 1.0, while for the instances in class E with M = 200 the case p = 0.8 and
the case p = 1.0 have been considered. Each combination is reported in the first
four columns of the tables reported in this section, and consists of five instances;
hence each row of the tables reports the average results for these five instances.

As reported in Section 5.2, dominated assignments can be found by simple
preprocessing tests. In fact, about 50% of the binary variables were fixed to 0 for
the class C instances, about 11% for class D and about 8% for class E. As expected,
the percentage of fixed variables increases as the number of levels K increases.

The branch-and-price algorithm was coded in C++ and compiled under Linux
OS with gcc version 2.96 with full optimizations. CPLEX 6.5.3 was used as an LP
solver. All tests were run on a PC equipped with an Intel P4 1600MHz CPU and

Experimental analysis 81

512MB RAM. Each test was stopped in case of memory overflow or whenever a
time-out of two hours was exceeded.

5.4.2 Parameters tuning

As discussed in the previous sections, three parameters affect the computational
performance of the algorithm. They are the number of columns generated in or-
der to populate the initial RMP, the threshold on the number of columns in the
RMP that triggers the columns removal routine and the number of iterations in
which a column is kept in the columns pool. In order to tune these parameters,
we considered the CPU time needed to solve the root problem of the instances
involving 200 tasks. In figure 5.1 we include three charts, in which different set-
tings for each parameter are compared. In each chart, the values in the abscissae
correspond to the different settings of the parameter, and the values in the ordi-
nates are the corresponding computation time. We observed that the computation
time did not change significantly for different number of levels. Therefore, in each
chart we present 8 series, considering each combination of the correlation type
and the number of agents, and reporting the average results on the corresponding
instances. First, we tried to initialize the RMP with the dummy column only, or
with columns corresponding to 5, 10, 25 and 100 primal solutions. It is worth
noting that the worst performance corresponds to the initialization of the RMP
with only few columns: when considered as constraints in the dual problem, these
columns restrict the solution space leaving the dual variables free to assume mis-
leading values. Setting this parameter to 25 seems to be the most appropriate
choice. Second, we tried to set the columns removal threshold to 3000, 4000, 5000,
6000 and 7000. Even if sometimes a setting to 5000 columns would be better
(instances of type C, with 15 agents) fixing the threshold to 3000 gives the best
average CPU time. Third, we tuned the iterations limit on the columns pool by
setting it to 0, which means not managing a pool of removed columns, 3, 6, 12 and
18. The value of 6 was found to be the best. A slight increase in the computation
time was observed moving from 0 to 3, which reflects the overhead for managing
the pool.

5.4.3 Computational results

In the first set of tests, the quality of the bound given by the LMP relaxation
is compared to the bound given by the LP relaxation, that is used by CPLEX
and other general purpose solvers. In Table 5.1 we report, for both methods,
the average integrality gap (‘int. gap’), that is the gap (v∗ − ω)/v∗ between the
relaxation value ω and the optimal (or the best-known) integer solution value
v∗, and the average number of fractional agent-level assignments for each task

82 – Ch. 5 A B&P algorithm for the MGAP

(‘fract.’), that is the ratio between the number of non-zero variables in an optimal
fractional solution and M , the number of tasks.

Both relaxations yield a rather tight bound, but the LMP relaxation clearly
dominates the LP relaxation also from an experimental point of view. Nevertheless,
the time required to obtain the LMP bound is one order of magnitude (sometimes
even two orders) higher than the time required to compute the LP relaxation.

The ratio between the LMP integrality gap and the LP integrality gap increases
as the ratio M/N decreases and decreases as K increases. This was expected,
since the M/N value represents the average number of tasks assigned to the same
agent. As reported by [74], at most two variables can assume fractional values
in the linear relaxation of a MCKP problem; these two fractional variables must
belong to the same multiple choice constraint (5.18). Hence, when a high number
of tasks is assigned to the same agent in a fractional solution, several task-level
assignments take an integer value, and the convexification of constraints (5.17)–
(5.18) has a minor effect. Second, a high K corresponds to a high number of binary
variables in the same multiple choice constraint. This does not affect the number
of variables with a fractional value; thus, following the previous argumentation,
the convexification has a minor effect. On the opposite, for both relaxations the
number of non-zero variables in a fractional solution increases as the ratio M/N
decreases. On the average, the LMP solution has more fractional assignments than
the LP solution. This is especially evident for instances in class D.

In Table 5.2 we report computational results for our method. The table consists
of two horizontal blocks. The first refers to the root node and the second to the
nodes of the search tree. We indicate v̄ the value of the best primal solution
found at the root node, v∗ the optimal solution value (or the best-known primal
bound, when optimality was not proved), ω̄ the optimal LMP value at the root
node and ω∗ the dual bound at the end of computation. In the ‘root node’ block
we report the value (v̄ − v∗)/v∗, that indicates how far the initial primal bound is
from optimality (‘primal gap’), the value (v̄ − dω̄e)/dω̄e, that is the gap between
the primal and dual bound at the root node (‘p.d. gap’), the number of column
generation iterations needed to reach a LMP optimum (‘iter.’), the number of
generated columns (‘cols’) and the time spent at the root node. In the ‘whole
search tree’ block we indicate the number of nodes evaluated (‘ev. nodes’), the gap
between the primal and dual bound at the end of computation (v∗ − dω∗e)/dω∗e
(‘gap’), the number of instances solved to proven optimality (‘opt’), and the overall
time spent (‘time’) in the exploration of the whole search tree (including the root
node).

By looking at the rightmost three columns of the root node block, it can be
noticed that the number of column generation iterations and the time required
to solve the relaxation decrease as the number of agents increases. In fact, the

Experimental analysis 83

insertion of new columns in the R-LMP is governed by an “all-negative” policy:
a new column with negative reduced cost can be found for each agent. A larger
number of agents means a larger number of columns added to the R-LMP at each
column generation iteration, and thus faster convergence.

By analyzing the computational results for the whole search tree, it is clear that
instances in class C can be solved very easily: optimality was proven at the root
node for all instances but one. This was expected, since resource consumption and
costs are not correlated, and an optimal solution can quickly be found by choosing
assignments with low resource consumption and low cost.

All the instances in class E were solved to optimality in a few minutes: often a
very tight primal bound was found at the root node, and the gap between primal
and dual bounds was closed by exploring a few nodes of the search tree. This
shows that our branching rule is effective for this kind of instances.

Effect of symmetries. Instances in class D are indeed the hardest ones. A
singular effect was experimentally observed: tight primal and dual bounds were
obtained at the root node, but the gap could not be closed after many branching
steps. We explain this phenomenon with the following observation. Let the effi-
ciency of an assignment (i, j, k) be the ratio 1/aijkcijk. As resource consumption
and cost are strongly correlated, several assignments have a similar efficiency. Sup-
pose that a task j is fractionally assigned to agent i in the optimal LMP solution
of a node in the search tree, and a branching operation forbids this fractional as-
signment. Even if agents are not identical, an equivalent solution is likely to exist,
in which the fractional part of task j is assigned to a different agent i′ at the same
efficiency, maybe by shifting to agent i the fractional part of another task j ′ pre-
viously allocated to agent i′. Hence, a fractional optimal solution after branching
would be a simple rearrangement of the tasks between the agents. This effect is
mitigated in class E instances, since the correlation between resource consumption
and cost is not linear.

This further motivates the depth-first search feature of our branching rule: the
gap can be closed just by finding the optimal integer solution, that is more likely
to be found deep in the search tree than at the root node, as fixing task-agent
assignments to 1 has a strong effect in the construction of an integer solution.

Large-scale instances. In order to test our algorithm on a more challenging
testbed we considered the set of instances presented by [102]. These instances
correspond to GAP problems generated with C, D and E correlation types, in
which up to 1600 tasks must be assigned to up to 80 agents. We considered the
problems involving the assignment of 400, 900 and 1600 tasks. In order to obtain
a set of corresponding MGAP instances, we put the tasks on 2, 3 and 4 levels for

84 – Ch. 5 A B&P algorithm for the MGAP

the instances with 400, 900 and 1600 tasks respectively, and adjusted the capacity
of the agents dividing each value by 2, 3 and 4 correspondingly. We imposed no
time limitation to these tests. The results obtained by our branch-and-price on
these modified instances are reported in Table 5.3. In the first horizontal block of
this table we report the original GAP instance ID and the number of agents, tasks
and levels of the corresponding MGAP instance. The second block corresponds to
the optimization status at the root node. We indicate how far the primal solution
found at the root node is with respect to the best known primal solution, the gap
between the primal and dual solutions and the time spent. The third block refers
to the overall branching tree and contains the gap between the primal and dual
bounds at the end of computation, the number of explored nodes and the time
required to obtain a proven optimal solution. The last two columns are marked
with a dash when the process ran out of memory. We observed the same behavior
of the previous analysis: branch-and-price was able to solve all the instances with
correlation type C and E; on the opposite, it failed to solve to proven optimality
the instances with correlation type D, even though the gap between primal and
dual bounds was very small.

Further testing. As discussed in the previous paragraph, instances in class D
remain challenging. While it is computationally easy to find a very tight primal
bound, it is hard to identify an optimal integer solution. We also measured the
Hamming distance between the primal solution found by our heuristics at the
root node and the best primal solution encountered while exploring the search
tree. Even if a small improvement is made in the solution value, an average
distance higher than 100 and 250 is observed for class D instances with M = 100
and M = 200 respectively (for class E such distance is about 45 and 65). The
symmetry in the LMP optimal solutions suggests the presence of symmetries also
in the integer optimal solutions. However, even thought symmetric optima could
exist, which are less far apart from the initial solution, it would be still hard to
cover such a large distance with standard local search methods.

Finally, we remark that the number of efficiency levels does not affect the per-
formance of our method: branch-and-price was able to solve instances involving
up to 30 efficiency levels. Although no problem with a so high number of effi-
ciency levels is addressed in the literature, this kind of instances could arise as a
discretization of some nonlinear resource consumption function.

5.4.4 Benchmark algorithms

General purpose solver. As a first term of comparison, we present the be-
havior of ILOG CPLEX 6.5.3 when used as an IP solver to optimize the MGAP.

Experimental analysis 85

CPLEX uses a branch-and-cut approach, automatically generating cliques, cover
and GUB-cover inequalities in order to strengthen the LP relaxation. All internal
parameters were kept at their default values. These include a relative optimality
tolerance of 0.01%. While instances in class C were handled quite easily, CPLEX
was able to solve only a small number of instances in class E, and no instance in
class D, mainly due to memory overflow problems.

Logic Cuts. Logic cuts are a class of inequalities, analogous to cover cuts, that
can be obtained in a preprocessing phase from the capacity constraints (5.3). A
similar generation of valid cover cuts in a preprocessing phase has been recently
adopted by [81] for the case of the GAP. The use of logic cuts to improve the perfor-
mances of a general-purpose solver for the MGAP is discussed by [85]. As proposed
by the authors, we added all non-dominated 1-cuts to the model of MGAP and
used CPLEX to solve the new formulation. The 1-cuts can be generated in linear
time with a simple procedure.

According to the computational experience described by [85], all CPLEX pa-
rameters were kept at their default values, except for the search policy parameter,
whose setting was changed from ‘best-bound-first’ to ‘up-branch-first’.

The introduction of logic cuts yielded a substantial improvement to the per-
formances of CPLEX for small instances: the size of the search tree was strongly
reduced, avoiding the memory overflow problems. However, the introduction of
these inequalities enlarged considerably the dimension of the problem, and the
computation time was substantially increased.

In order to assess the effectiveness of the heuristics and local search methods
used for branch-and-price, we tried to incorporate them in the optimization process
of CPLEX. We kept the same settings used for branch-and-price: we ran MGAPH2
and considered the SWAP neighborhood only at the root node, while MGAPH1
with the SHIFT neighborhood was used once at each node of the branching tree.

Experimental results. In Table 5.4 we compare the performances of the four
methods. The table is divided in four horizontal blocks; each block refers to a
solution strategy, which is indicated in the leading row. For each method we re-
port the average time to complete computation (when optimality was proven), the
number of instances solved to proven optimality and the average gap between the
primal and dual bounds, when computation exceeded resource limitation. As out-
lined before, even if the introduction of logic cuts solves the memory problems, the
convergence of the solver is slow. The embedding of the primal heuristics yielded
a further improvement to the performances of CPLEX, but the overall behavior
of the method was still the same. This test highlighted that the bounding and
branching techniques are of key-importance in the algorithmic success of branch-

86 – Ch. 5 A B&P algorithm for the MGAP

and-price. Branch-and-price clearly outperformed the other three methods: this
is especially evident for instances in class E, where CPLEX was able to prove the
optimality of only 9 of the instances with M = 100, the introduction of logic cuts
allowed to solve 2 more instances, while our algorithm always provided the opti-
mal solution. Instances in class D are difficult for both CPLEX and our algorithm.
However our method allows to obtain a smaller gap between the final upper and
lower bounds.

A hard instance. [64] described a hard instance involving 30 tasks, 8 agents
and 3 efficiency levels. The best solution found by their tabu search method after
120.7 seconds (on a DECstation 5000 / 120MHz) has a cost equal to 691634. [39]
tested their heuristics on this instance, finding solutions of cost equal to 714608
and 703912 within 0.2 and 0.1 seconds (on a HP9000 / 700MHz), with MGAPH1
and MGAPH2 respectively. [85], using CPLEX with logic cuts and allowing a
relative optimality tolerance of 1.0%, found a solution of value 690624 in 36 hours
of computation (on a machine equipped with a Pentium 100MHz CPU). We started
branch-and-price from scratch, that means we did not exploit information about
the previously known upper bounds. It solved this instance to proven optimality
in about three hours of computation, confirming the value of the optimal solution
to be 690624.

5.4.5 Conclusions

In this paper we have described a branch-and-price algorithm for the MGAP. At
the best of our knowledge this is the first exact method proposed in the literature
for the MGAP. It favorably compares against a state-of-the-art general purpose
MIP solver and it was able to prove optimality for a very hard MGAP instance, that
had not been solved to proven optimality so far. Its success mainly relies upon the
tightness of the set covering reformulation, the existence of an effective algorithm
to solve the MCKP and a branching rule that does not affect the combinatorial
structure of the pricing subproblem. Following an up-branch-first search strategy,
the exact optimization algorithm presented here is also suitable for approximation
purposes when very large scale MGAP instances are tackled.

Instances Linear relaxation LMP relaxation
Correlation N M K int. gap fract. int. gap fract.

C 10 100 3 2.35% 1.10 0.34% 1.23
10 100 4 2.41% 1.10 0.45% 1.33
10 100 5 1.82% 1.09 0.39% 1.22
20 100 3 4.59% 1.19 0.38% 1.31
20 100 4 3.32% 1.19 0.40% 1.43
20 100 5 3.10% 1.19 0.40% 1.41
30 100 3 5.96% 1.29 0.34% 1.41
30 100 4 3.73% 1.28 0.35% 1.50
30 100 5 0.36% 1.29 0.00% 1.83

Avg. (C) 3.07% 1.19 0.34% 1.41
D 10 100 3 0.12% 1.10 0.06% 1.73

10 100 4 0.12% 1.10 0.09% 1.71
10 100 5 0.06% 1.10 0.06% 2.03
20 100 3 0.67% 1.20 0.60% 2.45
20 100 4 0.53% 1.20 0.52% 2.67
20 100 5 0.43% 1.20 0.43% 3.32
30 100 3 1.06% 1.30 0.91% 2.81
30 100 4 0.56% 1.30 0.55% 2.87
30 100 5 0.50% 1.29 0.50% 3.37

Avg. (D) 0.45% 1.20 0.41% 2.55
E 10 100 3 0.16% 1.10 0.02% 1.43

10 100 4 0.13% 1.10 0.00% 1.13
10 100 5 0.11% 1.09 0.00% 1.21
20 100 3 0.65% 1.19 0.03% 1.71
20 100 4 0.56% 1.20 0.02% 1.78
20 100 5 0.63% 1.20 0.03% 1.77
30 100 3 1.86% 1.29 0.07% 2.32
30 100 4 1.64% 1.30 0.08% 2.20
30 100 5 1.53% 1.29 0.07% 2.13

Avg. (E) 0.81% 1.19 0.04% 1.74
C 15 200 4 1.07% 1.08 0.23% 1.25

15 200 5 1.00% 1.07 0.20% 1.26
30 200 4 0.19% 1.14 0.09% 2.07
30 200 5 0.00% 1.15 0.00% 2.74

Avg. (C) 0.57% 1.11 0.13% 1.83
D 15 200 4 0.15% 1.08 0.15% 2.56

15 200 5 0.11% 1.07 0.11% 3.13
30 200 4 0.66% 1.15 0.66% 4.13
30 200 5 0.46% 1.15 0.46% 4.71

Avg. (D) 0.34% 1.11 0.34% 3.63
E 15 200 4 0.08% 1.01 0.01% 1.31

(p = 0.8) 15 200 5 0.07% 1.01 0.00% 1.32
30 200 4 0.31% 1.01 0.01% 1.60
30 200 5 0.29% 1.01 0.01% 1.58

Avg. (E, p 0.8) 0.19% 1.01 0.01% 1.45
E 15 200 4 0.07% 1.07 0.01% 1.32

(p = 1.0) 15 200 5 0.06% 1.07 0.01% 1.25
30 200 4 0.27% 1.14 0.01% 1.42
30 200 5 0.27% 1.14 0.01% 1.57

Avg. (E, p 1.0) 0.17% 1.11 0.01% 1.39

Table 5.1: Comparison between LP relaxation and LMP relaxation

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100

C
P

U
 ti

m
e

(s
)

Number of solutions

Initializing the RMP with heuristic solutions

Type C, N = 15
Type C, N = 30
Type D, N = 15
Type D, N = 30

Type E, N = 15
Type E, N = 30

Type E (p = 0.8), N = 15
Type E (p = 0.8), N = 30

 0

 50

 100

 150

 200

 250

 300

 3000 4000 5000 6000 7000

C
P

U
 ti

m
e

(s
)

Columns limit

Limiting the number of columns in the RMP

Type C, N = 15
Type C, N = 30
Type D, N = 15
Type D, N = 30

Type E, N = 15
Type E, N = 30

Type E (p = 0.8), N = 15
Type E (p = 0.8), N = 30

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16 18

C
P

U
 ti

m
e

(s
)

Iterations limit

Deleting columns in the pool

Type C, N = 15
Type C, N = 30
Type D, N = 15
Type D, N = 30

Type E, N = 15
Type E, N = 30

Type E (p = 0.8), N = 15
Type E (p = 0.8), N = 30

Figure 5.1: Tuning the algorithm parameters

Instances root node whole search tree
Corr. N M K primal gap p.d. gap iter. cols time(s) ev. nodes gap opt time(s)

C 10 100 3 0.00% 0.00% 166.20 1702.40 5.19 0.00 0.00% 5 5.19
10 100 4 0.00% 0.00% 152.80 1684.40 5.14 0.00 0.00% 5 5.14
10 100 5 0.00% 0.00% 150.00 1619.40 4.77 0.00 0.00% 5 4.77
20 100 3 0.00% 0.00% 49.20 1315.20 1.62 0.00 0.00% 5 1.62
20 100 4 0.00% 0.00% 42.40 1222.40 1.58 0.00 0.00% 5 1.58
20 100 5 0.00% 0.00% 42.40 1196.20 1.61 0.00 0.00% 5 1.61
30 100 3 0.00% 0.00% 25.20 1329.00 1.18 0.00 0.00% 5 1.18
30 100 4 0.98% 0.16% 21.20 1242.60 1.26 1.20 0.00% 5 1.60
30 100 5 0.00% 0.00% 14.80 1142.80 1.28 0.00 0.00% 5 1.28

Avg. (C) 0.11% 0.02% 73.80 1383.82 2.62 0.13 0.00% 45 2.66
D 10 100 3 0.46% 0.49% 161.00 1741.80 6.92 6110.00 0.02% 3 2102.17

10 100 4 0.54% 0.57% 162.20 1763.20 7.49 6669.80 0.00% 4 3324.51
10 100 5 0.54% 0.54% 123.20 1473.00 6.20 3133.80 0.00% 5 1678.22
20 100 3 1.62% 1.76% 58.80 1527.60 3.36 10217.60 0.12% 0 –
20 100 4 1.52% 1.59% 50.40 1469.60 3.38 9584.20 0.07% 0 –
20 100 5 1.58% 1.63% 41.20 1325.00 3.21 11828.80 0.04% 1 6608.36
30 100 3 1.63% 1.80% 37.20 1700.40 2.78 7775.00 0.15% 0 –
30 100 4 1.37% 1.51% 34.00 1680.40 2.95 9740.80 0.13% 0 –
30 100 5 1.16% 1.22% 28.00 1576.60 2.94 10950.20 0.06% 0 –

Avg. (D) 1.16% 1.24% 77.33 1584.18 4.36 8445.58 0.07% 13 3428.31
E 10 100 3 0.41% 0.42% 181.80 1933.60 7.78 66.00 0.00% 5 63.52

10 100 4 0.04% 0.04% 192.60 2026.40 9.06 1.20 0.00% 5 10.73
10 100 5 0.28% 0.28% 189.00 1982.00 9.02 4.20 0.00% 5 14.40
20 100 3 1.08% 1.10% 65.20 1617.40 3.51 123.60 0.00% 5 53.89
20 100 4 0.52% 0.54% 65.00 1620.80 3.87 173.40 0.00% 5 80.72
20 100 5 0.95% 0.97% 68.00 1636.60 4.39 136.80 0.00% 5 68.59
30 100 3 1.84% 1.95% 32.40 1519.00 2.43 1698.00 0.00% 5 597.99
30 100 4 1.03% 1.10% 33.00 1567.40 2.91 711.60 0.00% 5 274.41
30 100 5 0.92% 0.98% 34.40 1585.60 3.38 478.80 0.00% 5 190.87

Avg. (E) 0.79% 0.82% 95.71 1720.98 5.15 377.07 0.00% 45 150.57
Avg. M = 100 0.68% 0.69% 82.28 1562.99 4.04 2940.93 0.02% 103 1193.85

C 15 200 4 0.00% 0.00% 357.80 2548.20 87.46 0.00 0.00% 5 87.46
15 200 5 0.00% 0.00% 356.00 2131.40 54.79 0.00 0.00% 5 54.79
30 200 4 0.00% 0.00% 47.00 2024.60 10.15 0.00 0.00% 5 10.15
30 200 5 0.00% 0.00% 27.60 1579.00 10.73 0.00 0.00% 5 10.73

Avg. (C) 0.00% 0.00% 197.10 2070.80 40.78 0.00 0.00% 20 40.78
D 15 200 4 0.72% 0.75% 182.20 2160.00 68.73 5278.20 0.02% 0 –

15 200 5 0.53% 0.54% 162.00 2767.00 58.26 4111.60 0.01% 3 1429.00
30 200 4 1.19% 1.25% 63.60 2659.00 29.70 5289.00 0.06% 0 –
30 200 5 0.94% 0.96% 60.00 2545.00 25.18 7500.80 0.02% 0 –

Avg. (D) 0.85% 0.88% 116.95 2532.75 45.47 5544.90 0.03% 3 1429.00
E (p = 0.8) 15 200 4 0.37% 0.37% 428.80 2779.80 123.18 16.20 0.00% 5 287.66

15 200 5 0.38% 0.38% 412.40 1627.80 104.06 30.00 0.00% 5 433.27
30 200 4 0.64% 0.65% 128.80 1711.80 45.11 148.20 0.00% 5 419.52
30 200 5 0.41% 0.41% 137.40 1720.40 45.87 47.40 0.00% 5 206.73

Avg. (E, 0.8) 0.45% 0.45% 276.85 1959.95 79.55 60.45 0.00% 20 336.79
E (p = 1.0) 15 200 4 0.42% 0.42% 390.00 2219.00 106.92 53.40 0.00% 5 975.23

15 200 5 0.23% 0.23% 405.00 1710.20 148.19 58.80 0.00% 5 1037.15
30 200 4 0.41% 0.41% 128.00 1633.20 44.52 46.80 0.00% 5 199.19
30 200 5 0.28% 0.28% 130.40 1689.80 44.47 86.40 0.00% 5 271.30

Avg. (E, 1.0) 0.33% 0.34% 263.35 1813.05 86.03 61.35 0.00% 20 620.71
Avg. M = 200 0.41% 0.42% 213.56 2094.14 62.96 1416.68 0.01% 63 606.82

Table 5.2: Experimental results for the branch-and-price algorithm

Instances root node whole search tree
ID Corr. N M K primal gap p.d. gap time(s) final gap ev. nodes time(s)

c10400 C 10 200 2 43.51% 43.51% 643.21 0.00% 6 757.69
c20400 20 200 2 0.64% 0.69% 111.75 0.00% 30 278.82
c40400 40 200 2 0.54% 0.54% 20.35 0.00% 12 50.25
c15900 15 300 3 0.09% 0.09% 4514.97 0.00% 6 4854.12
c30900 30 300 3 0.10% 0.10% 372.94 0.00% 90 2078.95
c60900 60 300 3 0.00% 0.00% 26.40 0.00% 0 31.95

c201600 20 400 4 0.07% 0.07% 5381.14 0.00% 3 5877.77
c401600 40 400 4 0.00% 0.00% 203.58 0.00% 0 213.42
c801600 80 400 4 0.00% 0.00% 43.99 0.00% 0 61.22

Avg. 4.99% 5.00% 1257.59 0.00% 16.33 1578.24
d10400 D 10 200 2 0.46% 0.49% 526.17 0.03% - -
d20400 20 200 2 0.51% 0.58% 86.22 0.07% - -
d40400 40 200 2 1.33% 1.48% 23.48 0.15% - -
d15900 15 300 3 0.63% 0.65% 2576.19 0.02% - -
d30900 30 300 3 1.10% 1.19% 301.49 0.09% - -
d60900 60 300 3 0.93% 1.05% 101.30 0.12% - -

d201600 20 400 4 0.00% 0.76% 10606.39 0.76% - -
d401600 40 400 4 0.00% 0.74% 649.28 0.74% - -
d801600 80 400 4 1.00% 1.07% 218.10 0.07% - -

Avg. 0.66% 0.89% 1676.51 0.23% - -
e10400 E 10 200 2 1.41% 1.42% 670.55 0.00% 804 17473.80
e20400 20 200 2 0.21% 0.21% 94.91 0.00% 3 121.89
e40400 40 200 2 1.96% 1.97% 27.38 0.00% 39 151.86
e15900 15 300 3 0.03% 0.03% 4732.69 0.00% 15 6607.22
e30900 30 300 3 0.85% 0.85% 350.93 0.00% 72 1759.14
e60900 60 300 3 0.02% 0.02% 130.60 0.00% 12 313.62

e201600 20 400 4 0.15% 0.15% 12446.65 0.00% 3 12996.30
e401600 40 400 4 0.02% 0.02% 875.21 0.00% 45 3188.50
e801600 80 400 4 0.17% 0.17% 276.39 0.00% 213 2685.78

Avg. 0.54% 0.54% 2178.37 0.00% 134.00 5033.12

Table 5.3: Testing branch-and-price on large size instances

Instances CPLEX 6.5.3 CPLEX + Logic Cuts CPLEX + LC + Heurs Branch and Price
Corr. N M K gap opt time(s) gap opt time(s) gap opt time(s) gap opt time(s)

C 10 100 3 0.00% 5 3.61 0.00% 5 6.56 0.00% 5 4.10 0.00% 5 5.19
10 100 4 0.00% 5 8.20 0.00% 5 11.00 0.00% 5 8.16 0.00% 5 5.14
10 100 5 0.00% 5 5.44 0.00% 5 7.50 0.00% 5 6.60 0.00% 5 4.77
20 100 3 0.00% 5 4.49 0.00% 5 7.92 0.00% 5 6.60 0.00% 5 1.62
20 100 4 0.00% 5 6.25 0.00% 5 7.96 0.00% 5 7.65 0.00% 5 1.58
20 100 5 0.00% 5 12.64 0.00% 5 15.03 0.00% 5 14.06 0.00% 5 1.61
30 100 3 0.00% 5 5.89 0.00% 5 6.99 0.00% 5 6.47 0.00% 5 1.18
30 100 4 0.00% 5 8.08 0.00% 5 13.55 0.00% 5 12.24 0.00% 5 1.60
30 100 5 0.00% 5 9.88 0.00% 5 11.43 0.00% 5 13.19 0.00% 5 1.28

Avg. (C) 0.00% 45 7.16 0.00% 45 9.77 0.00% 45 8.78 0.00% 45 2.66
D 10 100 3 0.64% 0 - 0.58% 0 - 0.24% 0 - 0.02% 3 2102.17

10 100 4 0.57% 0 - 0.50% 0 - 0.28% 0 - 0.00% 4 3324.51
10 100 5 0.66% 0 - 0.52% 0 - 0.22% 0 - 0.00% 5 1678.22
20 100 3 1.48% 0 - 1.32% 0 - 0.90% 0 - 0.12% 0 -
20 100 4 1.33% 0 - 1.30% 0 - 0.89% 0 - 0.07% 0 -
20 100 5 1.28% 0 - 0.99% 0 - 0.89% 0 - 0.04% 1 6608.36
30 100 3 1.87% 0 - 1.68% 0 - 1.32% 0 - 0.15% 0 -
30 100 4 1.86% 0 - 1.68% 0 - 1.39% 0 - 0.00% 0 -
30 100 5 1.51% 0 - 1.46% 0 - 1.18% 0 - 0.06% 0 -

Avg. (D) 1.24% 0 - 1.12% 0 - 0.81% 0 - 0.07% 13 3428.31
E 10 100 3 0.14% 2 791.06 0.14% 4 3820.26 0.03% 4 708.37 0.00% 5 63.52

10 100 4 0.06% 3 521.65 0.08% 3 3191.33 0.02% 4 714.58 0.00% 5 10.73
10 100 5 0.05% 4 466.01 0.04% 4 2278.66 0.00% 5 1734.20 0.00% 5 14.40
20 100 3 1.77% 0 - 1.49% 0 - 0.86% 0 - 0.00% 5 53.89
20 100 4 1.52% 0 - 1.71% 0 - 0.97% 0 - 0.00% 5 80.72
20 100 5 1.58% 0 - 2.60% 0 - 2.04% 0 - 0.00% 5 68.59
30 100 3 3.90% 0 - 4.02% 0 - 3.32% 0 - 0.00% 5 597.99
30 100 4 2.97% 0 - 3.57% 0 - 3.33% 0 - 0.00% 5 274.41
30 100 5 3.18% 0 - 3.04% 0 - 2.55% 0 - 0.00% 5 190.87

Avg. (E) 1.69% 9 592.91 1.86% 11 3096.75 1.46% 13 1052.38 0.00% 45 150.57
Avg. M = 100 0.98% 54 300.04 0.99% 56 1553.26 0.76% 58 530.58 0.02% 103 1193.85

C 15 200 4 0.00% 5 91.86 0.00% 5 93.90 0.00% 5 123.76 0.00% 5 87.46
15 200 5 0.00% 5 82.64 0.00% 5 131.47 0.00% 5 103.48 0.00% 5 54.79
30 200 4 0.00% 5 273.34 0.00% 5 385.82 0.00% 5 273.05 0.00% 5 10.15
30 200 5 0.39% 4 243.10 0.00% 5 586.54 0.00% 5 143.33 0.00% 5 10.73

Avg. (C) 0.10% 19 172.73 0.00% 20 299.44 0.00% 20 160.91 0.00% 20 40.78
D 15 200 4 0.63% 0 - 0.54% 0 - 0.29% 0 - 0.02% 0 -

15 200 5 0.60% 0 - 0.48% 0 - 0.22% 0 - 0.01% 3 1429.00
30 200 4 0.91% 0 - 0.99% 0 - 0.79% 0 - 0.06% 0 -
30 200 5 0.80% 0 - 0.83% 0 - 0.64% 0 - 0.02% 0 -

Avg. (D) 0.73% 0 - 0.71% 0 - 0.49% 0 - 0.03% 3 1429.00
E 15 200 4 0.17% 0 - 0.37% 0 - 0.17% 0 - 0.00% 5 287.66

p 0.8 15 200 5 0.17% 0 - 0.64% 0 - 0.16% 0 - 0.00% 5 433.27
30 200 4 1.17% 0 - 2.15% 0 - 1.86% 0 - 0.00% 5 419.52
30 200 5 1.10% 0 - 2.26% 0 - 2.03% 0 - 0.00% 5 206.73

Avg. (E, p 0.8) 0.65% 0 - 1.36% 0 - 1.05% 0 - 0.00% 20 336.79
E 15 200 4 0.25% 0 - 0.85% 0 - 0.66% 0 - 0.00% 5 975.23

p 1.0 15 200 5 0.24% 0 - 0.89% 0 - 0.80% 0 - 0.00% 5 1037.15
30 200 4 1.06% 0 - 2.11% 0 - 2.28% 0 - 0.00% 5 199.19
30 200 5 1.17% 0 - 1.97% 0 - 2.30% 0 - 0.00% 5 271.30

Avg. (E, p 1.0) 0.68% 0 - 1.45% 0 - 1.51% 0 - 0.00% 20 620.71
Avg. M = 200 0.54% 19 172.73 0.88% 20 299.44 0.76% 20 160.91 0.01% 63 606.82

Table 5.4: Comparison between CPLEX 6.5.3 and branch-and-price

Rounding heuristic:

Input: zd
i ∀i ∈ N ∀d ∈ D′

i

(the solution of R-LMP)

Output: i(j) ∈ N (agent assignment) and k(j) ∈ K (level assignment) ∀j ∈ M
(a feasible solution for the MGAP)

(Initialization)

forall i ∈ N do

C i := ∅; qi := bi

(Step 1: task-agent assignment)

fij =
∑

d∈D′
i

(
∑
k∈K

xd
ijk)z

d
i ∀i ∈ N ∀j ∈ M

forall j ∈ M do

Ij := {i | qi ≥ min k∈K{aijk}}
if Ij = ∅ then FAIL

else

i(j) := argmaxi∈Ij
{fij}

C i(j) := C i(j) ∪ {j}; qi(j) := qi(j) − min k∈K{ai(j)jk}

(Step 2: task-level assignment)

forall i ∈ N do

Solve to optimality the MCKP:

min
∑

j∈Ci

∑
k∈K

cijkxijk

s.t.
∑

j∈Ci

∑
k∈K

aijkxijk ≤ bi
∑
k∈K

xijk = 1 ∀j ∈ C i

xijk ∈ {0, 1} ∀j ∈ C i, ∀k ∈ K

forall j ∈ C i do k(j) := (k | xijk = 1)

Experimental analysis 93

Local search:

(Shift Neighborhood)

forall j ∈ M do

i′ := (null element); v := ci(j)jk(j)

forall i ∈ N, forall k ∈ K do

if (cijk < v AND qi ≥ aijk) then

i′ := i; k′ := k; v := cijk

if (i′ 6= (null element)) then

qi(j) := qi(j) + ai(j)jk(j)

qi′ := qi′ − ai′jk′

i(j) := i′; k(j) := k′

(Swap Neighborhood)

forever do

i′ := (null element); v := 0
forall js, jd ∈ N do

forall ks, kd ∈ K do

is := i(js); id := i(jd)
∆ := (cid js ks + cis jd kd) − (cis js k(js) + cid jd k(jd))
δs := ais jd kd − ais js k(js)

δd := aid js ks − aid jd k(jd)

if (∆ < v AND δs ≤ qis AND δd ≤ qid) then

v := ∆;

j′ := js; j ′′ := jd
k′ := ks; k′′ := kd

if (i′ = (null element)) then BREAK

qi(j′) := qi(j′) − ai(j′)j′k(j′) + ai(j′)j′′k′′

qi(j′′) := qi(j′′) − ai(j′′)j′′k(j′′) + ai(j′′)j′k′

SWAP(i(j ′), i(j ′′)); k(j ′) := k′; k(j ′′) := k′′

94 – Ch. 5 A B&P algorithm for the MGAP

Part III

Location Problems

Finally, we consider single-source location problems, in which a set of customers
has to be partitioned in regions, and a facility must be activated in each region.
In our view, these problems combine the characteristics of packing and assignment
problems. In fact, both fixed costs for activating the facilities and allocation costs
for assigning customers to facilities interact in the optimization process.

In Chapter 6 we describe a branch-and-price algorithm for the capacitated p-
median problem, which was the starting point of our study. The main focus is on
the experimental properties of the algorithm: we compare different multiple pricing
techniques and give quantitative evaluations of each component of the algorithm.

Then, in Chapter 7, we extend this approach to the broad class of single-source
capacitated location problems. We review the existing literature and give modeling
motivations to our work. The aim is to assess the effectiveness of a prototype of
a general purpose solver for this class of problems, based on branch-and-price. In
fact, we conduct an extensive experimental campaign with two objectives in mind.
First, highlighting the strong and weak features of this kind of approach, when
compared to the use of a branch-and-cut based package. Second, discussing the
peculiarities of location models from an experimental point of view.

98 – Ch. 5

Chapter 6

A branch-and-price algorithm for
the capacitated p-median problem

The capacitated p-median problem is the variation of the well-known p-median
problem in which a demand is associated to each user, a capacity is associated to
each candidate median and the total demand of the users associated to the same
median must not exceed its capacity. We present a branch-and-price algorithm,
that exploits column generation, heuristics and branch-and-bound to compute op-
timal solutions. We compare our branch-and-price algorithm with other methods
proposed so far and we present computational results both on test instances taken
from the literature and on random instances with different values of the ratio be-
tween the number of medians and the number of users.

6.1 Introduction

The p-median problem (PMP) is one of the most widely studied problems in loca-
tion theory. It consists of partitioning the vertices of a given graph into p subsets
and to choose a median vertex in each subset, minimizing the sum of the distances
between each vertex of the graph and the median of its subset. The PMP arises in
many different contexts such as network design, telecommunications, distributed
database design, transportation and distribution logistics. Kariv and Hakimi [53]
proved that the PMP is NP-hard. Optimization algorithms based on Lagrangean
relaxation have been proposed in [80], [24], [21] and [9]; approaches based on dual
formulations are illustrated in [40] and [46]. A survey on the PMP can be found
in [61].

If medians represent facilities providing a certain service and each vertex of
the graph represents a user who requires that service, it is natural to introduce

100 – Ch. 6 A B&P algorithm for the CPMP

capacity constraints, so that the sum of the demands of the users assigned to
each facility is forced not to exceed the capacity of that facility. This yields the
capacitated p-median problem (CPMP). Algorithms devised for the uncapacitated
PMP cannot be adapted to the CPMP in a straightforward way: even finding a
feasible solution is NP-complete when capacities are considered.

Very recently, two heuristic algorithms for the CPMP have been presented:
Lorena and Senne [69] followed a column generation approach, finding good so-
lutions on real instances with up to 402 vertices, while Diaz and Fernández [29]
attacked an instance with 737 vertices through hybrid scatter search and path
relinking.

In this paper we deal with exact optimization algorithms for the CPMP. The
optimization of the CPMP can be pursued through the adaptation of an algo-
rithm developed by Pirkul [86] for the capacitated concentrator location problem
(CCLP): the CCLP is similar to the CPMP in that it involves the allocation of a
set of indivisible users’ demands to capacitated facilities, but the number of facil-
ities to be used is not fixed; instead a cost is incurred for each facility used. The
algorithm is based on Lagrangean relaxation and branch-and-bound and it can
solve the CCLP to optimality on graphs with up to 100 vertices in a few minutes.
Another approach was suggested by Ross and Soland [91] and consists of the refor-
mulation of CPMP instances as generalized assignment problem (GAP) instances;
though based on an elegant transformation, this technique is not competitive be-
cause the GAP instances it produces are very large. More recently, Baldacci et
al. [6] developed an algorithm which either proves optimality or provides a bound
on the approximation obtained; the authors report about experiments for prob-
lems with up to 200 vertices and 20 medians, when their algorithm is initialized
with quasi-optimal feasible solutions. In this paper we present a branch-and-price
algorithm for the exact solution of the CPMP and we compare it with a general
purpose integer linear programming solver (CPLEX) and with the algorithm of
Pirkul (adapted to the CPMP). We also compare our results with those obtained
by the algorithm of Baldacci et al. [6] when it is properly initialized.

The paper is organized as follows. In Section 6.2 we define the mathematical
model of the CPMP and we present a disaggregated formulation; then we compare
the lower bounds obtained from the corresponding linear relaxations; in Section 6.3
we describe our branch-and-price algorithm and we illustrate some implementation
details; in Section 6.4 we describe the algorithms we used as benchmarks and we
present experimental results.

Formulations 101

6.2 Formulations

Consider a graph G = (N , E) and a subset M ⊆ N ,M = {1 . . .M} of its vertices
that are candidates to be medians. For each vertex i ∈ N an integer weight wi

represents its demand. For each candidate median j ∈ M an integer coefficient
Qj represents its capacity. Integer coefficients dij (usually referred to as distances)
describe the cost of allocating each vertex i ∈ N to each median j ∈ M. We
make the assumption that dij ≥ 0 ∀i ∈ N , j ∈ M. The vertex set N must be
partitioned into p subsets (clusters), where p is given. The capacitated p-median
problem (CPMP) is formulated as follows:

CPMP) min v =
∑

i∈N

∑

j∈M

dijxij

s.t.
∑

j∈M

xij = 1 ∀i ∈ N (6.1)

∑

i∈N

wixij ≤ Qjyj ∀j ∈ M (6.2)

∑

j∈M

yj = p (6.3)

xij ∈ {0, 1} ∀i ∈ N , ∀j ∈ M

yj ∈ {0, 1} ∀j ∈ M

Binary variables x are assignment variables: xij = 1 if and only if vertex i is
assigned to a median located in vertex j. Binary variables y correspond to location
decisions: yj = 1 if and only if vertex j is selected to be a median. The objective is
to minimize the sum of allocation costs. Set partitioning constraints (6.1) impose
that each vertex is assigned to a median. Capacity constraints (6.2) impose that
the sum of the vertex weights in each cluster do not exceed the capacity of the
median and forbid the assignment of vertices to unselected medians. To satisfy
constraint (6.3) exactly p medians must be selected.

The linear relaxation of this formulation can be strengthened in two ways:
first, including the inequalities xij ≤ yj, ∀i ∈ N , j ∈ M, arising from constraints
(6.2); second, by dynamic generation of valid inequalities. The illustration of the
test instances we have used is presented in Subsection 6.2.4. Our computational
experience using CPLEX 6.5 as a general purpose solver is reported in Section 6.4.

6.2.1 Dantzig-Wolfe decomposition

Hereafter we derive an alternative formulation of the CPMP amenable to a column
generation approach.

102 – Ch. 6 A B&P algorithm for the CPMP

Let (1, p) be the vector of the right-hand side terms of constraints (6.1) and
(6.3), dj = (d1j . . . dNj) be the vector of the distances between each vertex and the
candidate median j ∈ M, xj = (x1j, . . . , xNj) the vector of assignment variables
related to the median in j ∈ M and w = (w1, . . . , wN) the vector of vertex weights.
Consider the CPMP linear relaxation, expressed as follows:

min
∑

j∈M

(dj , 0)T (xj , yj)

s.t.
∑

j∈M

(xj , yj) = (1, p)

(xj , yj) ∈ Ωj ∀j ∈ M

where Ωj = {(xj , yj) ∈ <N+1
+ | xij ≤ 1 ∀i ∈ N , yj ≤ 1, wT xj ≤ Qjyj}. The

optimal value of this linear relaxation is a lower bound for the CPMP. In order
to improve this bound, we replace each polyhedron Ωj with the convex hull of its
integer points:

min
∑

j∈M

(dj , 0)T (xj , yj)

s.t.
∑

j∈M

(xj , yj) = (1, p)

(xj , yj) ∈ conv(Ωj) ∀j ∈ M

Since Ωj is the polyhedron of the linear relaxation of a binary knapsack problem
(see [74] for a classical reference), which is known not to have the integrality
property, its extreme points can have fractional coordinates; therefore the lower
bound computed after the convexification of each Ωj can be stronger than that
of the linear relaxation of the CPMP (and our experiments reported in table 6.1
show that this is actually the case).

Since the y variables are bounded and since the weights and the capacities
are non-negative, every polyhedron Ωj is bounded, and every solution (xj , yj) ∈
conv(Ωj) can be obtained as a convex combination of the Lj +1 extreme points of
conv(Ωj). We indicate the set of the extreme points with {(0, 0)), (x̄1, 1), . . . , (x̄Lj , 1)}.
Therefore we have

(xj , yj) =
∑

k∈Zj

(x̄k, ȳk)zj
k,

∑

k∈Zj

zj
k = 1, zj

k ∈ <+ ∀k ∈ Zj (6.4)

where each k ∈ Zj is the index of an extreme point of Ωj. Substituting expression

Formulations 103

(6.4) in the formulation of the linear relaxation of the CPMP we obtain

min
∑

j∈M

(dj , 0)T
∑

k∈Zj

(x̄k, ȳk)zj
k

s.t.
∑

j∈M

∑

k∈Zj

(x̄k, ȳk)zj
k = (1, p)

∑

k∈Zj

zj
k = 1 ∀j ∈ M

zj
k ∈ <+ ∀j ∈ M ∀k ∈ Zj

Therefore the decomposition and convexification of the linear relaxation of the
CPMP yields the following linear master problem (LMP):

LMP) min
∑

j∈M

∑

k∈Zj

(
∑

i∈N

dijx
k
i)z

j
k

s.t.
∑

j∈M

∑

k∈Zj

xk
i z

j
k ≥ 1 ∀i ∈ N (6.5)

−
∑

j∈M

∑

k∈Zj

zj
k ≥ −p (6.6)

−
∑

k∈Zj

zj
k ≥ −1 ∀j ∈ M (6.7)

zj
k ∈ <+ ∀j ∈ M, ∀k ∈ Zj.

Each column of this model corresponds to a feasible cluster, that is an assignment
of vertices to a median, that satisfies the capacity constraint. Each cluster k is
described by assignment coefficients xk

i equal to 1 if and only if vertex i ∈ N
belongs to cluster k ∈ Zj of median j ∈ M. A binary variable zj

k is associated
with each cluster. Constraints (6.5) guarantee that each vertex is assigned to at
least one median; constraint (6.6) implies that the total number of selected clusters
is at most p; constraints (6.7) impose that no more than one cluster is associated
to the same median.

In model (6.5)-(6.7) all equality constraints have been replaced by inequalities
and hereafter we briefly discuss the correctness and usefulness of the substitutions.

Partitioning constraints (6.1) can be replaced by covering constraints (6.5)
because all distances are non-negative and therefore it does always exist an optimal
solution in which no user is assigned more than once.

Since there is no fixed cost associated to the medians, if an optimal solution
exists with p′ < pmedians, there is also an equivalent solution with pmedians, p−p′

of which have empty clusters. Therefore equality constraint (6.3) can be replaced

104 – Ch. 6 A B&P algorithm for the CPMP

by the inequality
∑

j∈M yj ≤ p. This yields the constraint
∑

j∈M

∑
k∈Zj ykzj

k ≤
p in our reformulation. However empty clusters do affect neither the objective
function value nor the satisfaction of constraints (6.5) and therefore we can make
the assumption that no empty cluster (i.e. a cluster with yk = 0) appears in
LMP. For this reason the constraint

∑
j∈M

∑
k∈Zj ykzj

k ≤ p can be restated as∑
j∈M

∑
k∈Zj z

j
k ≤ p and constraints (6.7) are stated as inequalities.

Each set Zj of feasible clusters contains an exponential number of elements.
Since LMP cannot be solved directly because of the exponential number of its
columns, column generation (see [43]) is applied: a restricted linear master problem
(RLMP), defined by a relatively small subset of columns is considered and solved
to optimality; then, a search is performed for new columns of negative reduced cost
and if any such column is found, it is inserted into the formulation and the RLMP
is solved again. When no columns of negative reduced cost exist, the optimal
solution of the RLMP is also optimal for the LMP and its value is a valid dual
bound to be used in a branch-and-bound framework.

When solving LMP by column generation, the set covering formulation above
has at least two advantages compared to the equivalent set partitioning formula-
tion: first, the generation of feasible solutions is easier and therefore the primal
simplex algorithm can be always easily initialized with a feasible basis; second, all
dual variables are non-negative and this restricts the dual space and speeds up
the convergence. A drawback is that the LMP may have an optimal fractional
solution, in which some user is covered more than once; in this case some minor
modifications to the primal bounding procedure and to the branching scheme have
to be made (see Section 6.3).

6.2.2 The pricing problem

Let λ ∈ RN
+ , η ∈ R+ and µ ∈ RM

+ be the vectors of non-negative dual variables
corresponding to constraints (6.5), (6.6) and (6.7) respectively; the reduced cost
of column k ∈ Zj is

rk(λ, η,µ) =
∑

i∈N

dijx
k
i −

∑

i∈N

λix
k
i + η + µj

To find columns with negative reduced cost, one must solve a pricing problem for
each median j ∈ M:

min
∑

i∈N

(dij − λi)x
k
i + η + µj

s.t.
∑

i∈N

wix
k
i ≤ Qj

xk
i ∈ {0, 1} ∀i ∈ N

Formulations 105

and this requires the solution of the following binary knapsack problem:

KPj) max τj =
∑

i∈N

(λi − dij)x
k
i

s.t.
∑

i∈N

wix
k
i ≤ Qj

xk
i ∈ {0, 1} ∀i ∈ N

Therefore the computational effectiveness of our branch-and-price algorithm mainly
relies upon that of the algorithms used for the iterated solution of the master prob-
lem (i.e. the simplex algorithm) and the binary knapsack subproblem. One of our
main motivations for applying the branch-and-price technique to the CPMP is the
existence of very effective algorithms and reliable implementations for both linear
programming and the binary knapsack problem.

6.2.3 Lagrangean relaxation

The lower bound obtained from the LMP can also be obtained through the La-
grangean relaxation of semi-assignment constraints (6.1) of the CPMP formulation:

LR) min ωLR =
∑

i∈N

∑

j∈M

dijxij+
∑

i∈N

λi(1 −
∑

j∈M

xij)

s.t.
∑

i∈N

wixij ≤ Qjyj ∀j ∈ M (6.8)

∑

j∈M

yj = p (6.9)

xij ∈ {0, 1} ∀i ∈ N ,∀j ∈ M

yj ∈ {0, 1} ∀j ∈ M

The Lagrangean multipliers in LR correspond to the dual variables λ in the LMP
and the Lagrangean subproblem can be decomposed in the same M binary knap-
sack problems as the pricing subproblem in the column generation approach (for
the equivalence between Dantzig-Wolfe decomposition and Lagrangean relaxation
the reader is referred to mathematical programming textbooks like [83]). Therefore
column generation can be used as a method alternative to subgradient optimization
to update the Lagrangean multipliers.

6.2.4 Benchmark instances and lower bound comparison

We considered a testbed made of four classes of instances, named α, β, γ and δ.
Each class consists of forty instances: twenty of them are taken from the literature

106 – Ch. 6 A B&P algorithm for the CPMP

([84], [70] and [6]) and concern graphs with 50 and 100 vertices and p = N
10

; the
other twenty instances were randomly generated on graphs with cardinality 150
(15 medians) and 200 (20 medians): vertex coordinates were drawn from a uniform
distribution between 1 and 100 and vertex demands were drawn from a uniform
distribution between 1 and 20. Each dij coefficient was taken as the Euclidean
distance computed from the coordinates of vertices i and j, rounded down to the
nearest integer. In random instances all capacities were fixed to 120. In both
the random and the literature instances, the set N of vertices and the set M of
candidate medians coincide, hence N = M . In our experiments we could observe
that the behavior of the different algorithms may be significantly influenced by the
ratio between p and N . This means that a sound test set for the CPMP cannot
be limited to instances where the ratio between p and N is constant. Therefore
the same forty instances were solved with different number of medians: p = N

10
in

class α, p = bN
4
c in class β, p = bN

3
c in class γ and p = b2N

5
c in class δ. The

overall capacity was preserved in all classes by setting Qj = d12N
p
e ∀j ∈ M. In all

instances in our test set the medians have the same capacity and dij = 0 whenever
user i and median j coincide.

All tests presented in this paper were done on an Intel Pentium IV 1600 MHz
PC with 512 MB RAM in Linux environment (RedHat 7.2, kernel 2.4.19). The
algorithms were coded in C++, compiled with gcc/g++ version 2.96 with “-O3”
optimization level. We imposed some resource limitation to every test: computa-
tion was halted after one hour or in case of memory overflow. ILOG CPLEX 6.5
was used as an LP solver in the branch-and-price algorithm.

In table 6.1 we compare (a) the bound obtained from the CPMP linear relax-
ation strengthened by inequalities xij ≤ yj and tightened with clique, cover and
GUB-cover inequalities automatically generated by CPLEX; (b) the bound ob-
tained from Lagrangean relaxation and subgradient optimization (see Section 4.1
for details); (c) the bound obtained from the LMP. As a measure of the quality of
these relaxations we indicate the average gap between each lower bound (LB) and
the best known upper bound (UB), that it UB−LB

UB
. The upper bounds we used are

often the optimal solution values.

Bound (a) is systematically worse than the others on all classes and all sizes.
Lower bound (b) is found by subgradient optimization halted after 300 iterations.
Therefore it does not exactly correspond to lower bound (c), obtained from the
LMP, that corresponds to solving the Lagrangean dual to optimality. Lower bound
(c) is definitely dominating both (a) and (b); this can be interpreted as a measure
of the effectiveness of the convexification of the capacity constraints.

A branch-and-price algorithm 107

N p CPMP SG LMP
(a) (b) (c)

50 5 1.21% 1.14% 0.99%
12 4.17% 3.20% 2.88%
16 3.90% 2.81% 2.39%
20 4.44% 4.04% 1.73%

100 10 1.26% 1.06% 0.90%
25 3.84% 3.28% 2.90%
33 3.43% 2.98% 2.67%
40 3.84% 3.16% 2.12%

150 15 0.52% 0.58% 0.30%
37 2.31% 1.93% 1.65%
50 3.00% 2.54% 2.26%
60 3.36% 2.85% 2.03%

200 20 0.64% 0.64% 0.44%
50 4.89% 4.34% 3.93%
66 5.38% 4.69% 4.32%
80 5.48% 4.65% 3.22%

Table 6.1: Comparison between different lower bounds

6.3 A branch-and-price algorithm

6.3.1 Branching

The choice of the branching rule in branch-and-price algorithms is crucial because
the addition of constraints may change the structure of the pricing problem. We
have tested two branching strategies, outlined hereafter.

Strategy 1: branching on binary variables. This branching strategy is simi-
lar to the one used by Pirkul in his Lagrangean-based branch-and-bound algorithm
for the capacitated concentrator location problem [86] and to the method by Diaz
and Fernández for the single-source capacitated plant location problem [28]. Intu-
itively, fixing location variables y has much a stronger effect than fixing assignment
variables x: when a location variable is fixed to 0 many assignment variables can
be also fixed to 0; moreover, once p location variables have been fixed to 1, the
CPMP reduces to a generalized assignment problem. Therefore it is effective to
fix y variables early in the exploration of the search tree.

A candidate median j∗ is selected and two possibilities are considered: in one
branch all columns k with k ∈ Zj∗ are discarded (that is the candidate median is
fixed as “not used”); in the other branch the equality constraint

∑
k∈Zj∗ z

j∗

k = 1 is
inserted into the RLMP (that is the candidate median is fixed as “used”). In both
cases the structure of the pricing problem is not affected. The branching variable
j∗ is selected among the candidate medians not yet fixed as the one with minimum
value of τj (that is the most unpromising one) and the branch in which the median
is not used is explored first, with a depth-first policy.

When p medians have been fixed as “used” or N − p have been fixed as “not

108 – Ch. 6 A B&P algorithm for the CPMP

used”, branching is performed by fixing variables x, that is assigning the vertices
to the selected medians. Assigning vertex i∗ to median j∗ corresponds to fixing
xk

i∗ = 1 in the pricing subproblem KPj∗ and xk
i∗ = 0 in all KPj, j 6= j∗. The

branching vertex i∗ is the one with the largest number of fractional assignments to
different medians in the optimal solution of the LMP (instead, in Pirkul’s algorithm
the vertex with maximum weight wi is chosen).

In each successor node of the search tree the branching vertex i∗ is assigned to
a different median, so that p branches are considered (in random order).

We used this branching strategy in conjunction with depth-first search policy,
because this allows to exploit the structure of the LMP (namely, the columns and
the optimal basis) of each predecessor node in the search tree to solve the LMP
of its first successor without explicitly storing such information for each node.
Moreover depth-first search policy quickly produces good feasible solutions, that
can be useful to prune the search tree.

Strategy 2: branching on semi-assignment constraints. This branching
strategy is similar to that used by Savelsbergh in his branch-and-price algorithm
for the GAP [95]. For each vertex i ∈ N we consider the set Mi of candidate
medians j ∈ M for which there is a fractional assignment xij in the optimal solu-
tion of the RLMP. In Savelsbergh’s algorithm the set Mi is partitioned into two
subsets M−

i = {j ∈ M : xij > 0, j ≤ j∗} and M+
i = {j ∈ M : xij > 0, j > j∗} by

choosing j∗ in such a way that |M−
i | = d |Mi|

2
e. We elaborated on this idea, aiming

at a balanced partition: the elements in Mi are sorted by non-increasing value of
fractional assignment and they are inserted alternately in M−

i and in M+
i . The

set of candidate medians to which vertex i is not assigned is also partitioned into
two subsets M̂−

i and M̂+
i of balanced cardinality. In [95] the author proposed

to choose j∗ as close as possible to M
2

with the constraint of leaving at least one
fractional variable on each side, but we found that our choice of j∗ produces better
results. The vertex i∗ selected for branching is the one for which |Mi| is maxi-
mum. In case of ties we select the vertex for which

∑
j∈M−

i∗

∑
k∈Zj xk

i∗z
j
k is closest to

1
2

∑
j∈Mi∗

∑
k∈Zj xk

i∗z
j
k. Then we branch on the original constraint

∑
j∈M xi∗j = 1

by setting
∑

j∈M−
i∗
∪ cM−

i∗
xi∗j = 0 in one branch and

∑
j∈M+

i∗
∪ cM+

i∗
xi∗j = 0 in the

other. The addition of these constraints does not change the structure of the
knapsack problems; it only reduces their size.

Our experiments showed that branching strategy 2 is definitely more effective
than strategy 1: only 57 of the 160 instances considered were solved to proven
optimality with strategy 1 while 92 instances were solved with strategy 2. More-
over, on the instances solved with both methods, the algorithm with strategy 2
was faster. For this reason the computational results reported in tables 6.3 to 6.6

A branch-and-price algorithm 109

are referred to strategy 2.

6.3.2 Primal bound

The problem of finding a feasible solution to the CPMP is NP-complete: the
reduction from Partition [54] is the same as for the GAP (see [74]). To compute
approximate solutions to the CPMP we modified the MTHG algorithm [73], that
was devised by Martello and Toth for the GAP. Once defined suitable coefficients
fij as a measure of the desirability of assigning each job i to each machine j, the
MTHG algorithm goes through two steps. In the first step all jobs are sorted
in decreasing order of a regret value and then they are assigned one at a time
to their “most desired” machine. The regret is defined as the difference between
the coefficient fij′ referred to the most desirable machine, and the coefficient fij′′

referred to the second most desirable one. In the second step, provided that all
jobs have been assigned without exceeding capacities, the solution is improved by
single-job exchanges in a local search fashion. If some job remains unassigned the
algorithm fails.

Jörnsten and Näsberg [52] proposed a similar algorithm in which all jobs are
assigned even if capacity constraints are violated. Afterwards local search steps
are executed to possibly achieve feasibility, followed by further local search steps
to improve the solution.

In our algorithm we first choose p candidate medians (step 1); then the ver-
tices are assigned to the medians in the same way as in the MTHG algorithm,
that is without exceeding capacities (step 2); if some vertex remains unassigned,
local search iterations are performed to produce a feasible solution (step 3); if
this step succeeds, a final local search tries to improve the solution (step 4). A
synthetic description of each step follows; the complete pseudo-code is reported in
the appendix.

Step 1: medians selection. If a CPMP instance with non-uniform capacities
is feasible, obviously it has at least one feasible solution in which the p most
capable vertices are the medians. However in the CPMP instances considered in
the literature all candidate medians have the same capacity. In this case, following
Savelsbergh [95], the desirability coefficients have been defined as

fij =
∑

k∈Zj

xk
i z

j
k ∀i ∈ N ∀j ∈ M

in order to produce an integer solution similar to the optimal solution of the RLMP.
Then the p vertices with the highest values of ψj are chosen as medians, where

ψj =
∑

i∈N

fij ∀j ∈ M.

110 – Ch. 6 A B&P algorithm for the CPMP

Step 2: direct assignment. In step 2 our algorithm is identical to that of
Martello and Toth: the vertices are assigned to the selected medians in decreasing
order of the regret value. Step 2 terminates as soon as a vertex is encountered
which cannot be assigned to any median.

Step 3: assignment through exchanges. In this step all best-fit 1-exchanges
are evaluated: an unassigned vertex i replaces a vertex k of smaller weight in a
cluster Cj whenever the capacity constraint allows for such an exchange. The
replaced element k is immediately inserted in another cluster if possible, as in step
2; otherwise it remains unassigned. The algorithm chooses i, j and k so that the
residual capacity of Cj is minimized.

Step 4: solution improvement. Two different neighborhoods are explored in
this final local search step. At each iteration one element is shifted from a cluster
to another or two elements belonging to different clusters are swapped.

At the root node the evaluation of the primal bound is done after each column
generation iteration; in all the other nodes of the search tree it is done at the end
of the column generation routine.

6.3.3 Columns management

At each iteration the algorithm inserts into the RLMP all columns with negative
reduced cost which have been found. After the termination of the column gen-
eration algorithm, it removes from the RLMP all columns whose reduced cost is
higher than a threshold, that is a function of the gap between the best incum-
bent primal solution and the optimal solution of the LMP. In particular we set
the threshold equal to the ratio between the primal-dual gap and the number of
medians p. The removal is also performed during the execution of the column
generation algorithm every time the number of columns exceeds a limit (set to
3000 in our experiments). In this case, the dual bound of the father node is used
in the computation of the threshold.

In general there is no guarantee that the columns removed from the RLMP
in one node of the search tree will not belong to the optimal solution of another
node. Therefore it is useful to store removed columns in a pool and to scan it
before running the pricing algorithm. Since every column is related to a particular
candidate median, the pool is partitioned into M subsets. If any column with
negative reduced cost is found in the pool, it is inserted into the RLMP.

To keep the pool size limited, the columns are erased from the pool when their
reduced cost is non-negative for a certain number of consecutive evaluations (3 in
our experiments).

To achieve feasibility the RLMP is initialized at each node with a dummy
column of cost

∑
i∈N max j∈M{dij}, corresponding to an infeasible cluster, that

A branch-and-price algorithm 111

covers all vertices and uses none of the free medians (those whose corresponding y
variable has not been fixed). The structure of the dummy column is the following:
all its coefficients in constraints (6.5) are set to 1; the coefficient in constraint (6.6)
is set to 0; the coefficients in constraints (6.7) are set to -1 if the corresponding y
variable has been fixed to 1, and they are set to 0 otherwise.

To improve the performance of the column generation algorithm at the root
node, we also generate twenty initial solutions with the same primal heuristic
illustrated above. Ten solutions are computed using fij = −dij and ten using
fij = 1/dij for i 6= j and setting fii to a very large value. In both cases the set of
medians in step 1 is chosen at random with uniform probability distribution. The
columns generated in this way are inserted even if the corresponding solutions are
infeasible because of violations of the partitioning constraints.

In each node of the search tree the RLMP is initialized with the columns of the
most recently solved node plus some additional columns taken from the pool with
the following procedure: for every node of the search tree we store the optimal
values of the dual variables; for each successor node we use the dual values of its
predecessor to compute the reduced costs of all columns in the pool; if any column
is found with negative reduced cost, it is added to the initial formulation of the
RLMP in the successor node.

6.3.4 Lower bound and termination

The equivalence between Dantzig-Wolfe decomposition and Lagrangean relaxation
is exploited both for variable fixing purposes and in the termination test.

At each iteration t of column generation the current values of the dual variables
λt are used as Lagrangean multipliers to compute a valid lower bound:

ωt
LR = −

∑

j∈MLR

τ t
j +

∑

i∈N

λt
i

where MLR ⊆ M is the set of vertices with the p maximum values of τ t
j . In this

way a sequence of valid lower bounds is computed during column generation and
this allows to fix variables or even to prune the current node of the search tree
before column generation is over.

When the gap between the optimal value of the RLMP at iteration t and the
best incumbent Lagrangean lower bound ω∗t

LR = max {ω1
LR, . . . , ω

t
LR} is smaller

than a predefined threshold (set to 10−4 in our tests), the column generation
algorithm is terminated and ω∗t

LR is kept as the final lower bound. This allows to
reduce the typical and undesired tailing-off effect in the column generation routine.
This technique is not used at the root node, where column generation is iterated
until no more columns with negative reduced can be identified. In fact, the set

112 – Ch. 6 A B&P algorithm for the CPMP

of dual values obtained during the last column generation iterations can be useful
to perform effective variable fixing tests; moreover, the structure of quasi-optimal
LMP solutions can be exploited by the primal heuristic to obtain tight bounds.

Experimental results show that this termination criterion reduces the compu-
tation time and the number of column generation iterations in non-root nodes. We
made a comparison between the performances of our algorithm with and without
the use of the Lagrangean lower bound on the set of instances with N = 50 of
the four classes and we observed a reduction of about 8.5% in the overall CPU
time required and a reduction of about 2.5% in the average number of column
generation iterations needed in each non-root node of the search tree.

Subgradient optimization. It is also possible to better exploit the relationship
between column generation and Lagrangean relaxation outlined above to improve
the dual variables via subgradient optimization [47] after each column generation
iteration. Starting with the current optimal values of the dual variables λt, 100
subgradient iterations are executed. The step parameter is initialized to 2 and
halved after every 10 iterations in which ωt

LR ≤ ωt−1
LR , that is the current lower

bound has not been improved with respect to the previous iteration.

At each subgradient iteration we also compute a primal solution using a La-
grangean heuristic: medians are chosen according to the values of the Lagrangean
penalties; when partitioning constraints are not violated, we use the same as-
signments which appear in the solution of the RLMP; the allocation of the other
vertices is done as in the MTHG algorithm, with desirability coefficients fij = −dij;
then a local search step is performed, as proposed by Mulvey and Beck [78]: after
every primal bound evaluation, the optimal median for every cluster is re-computed
and a new primal bound is evaluated with the new set of medians; this process is
iterated until no more changes in the medians occur or a limit of 5 iterations is
reached.

This combination of column generation with subgradient optimization yielded
significant improvements at the root node, in terms of reduced number of col-
umn generation iterations, reduced computational time to achieve convergence,
increased number of variables fixed and quality of the primal bound. However,
this improvement did not reduce neither the size of the search tree nor the time
required by the algorithm to complete the enumeration. Furthermore, this method
was too time-consuming to be used at each node of the search tree.

Variable fixing. Given a solution of the Lagrangean relaxation LR, let ωLR be
its value and let jWI ∈ argminj∈MLR{τj} be the vertex with minimum τj value
which is a median and jBO ∈ argmaxj /∈MLR{τj} be the vertex with maximum τj
value which is not a median (WI stands for “worst in”, BO for “best out”). Let also

A branch-and-price algorithm 113

v∗ be a primal bound. If it does exist j ∈ MLR such that dωLR + τj − τjBOe ≥ v∗,
then yj can be fixed to 1. Analogously, if it does exist j /∈ MLR such that
dωLR−τj +τjWIe ≥ v∗, then yj can be fixed to 0 (this also implies xij = 0 ∀i ∈ N).

Once the τj values have been computed, this variable fixing step takes O(M)
time and it may reduce the problem size considerably. In our experiments variable
fixing was done at each iteration of the subgradient optimization algorithm at the
root node, and only at the end of column generation at the other nodes in the
search tree.

The effectiveness of the variable fixing test at the root node can be appreciated
from the computational results reported in tables 6.3 to 6.6 in columns “fix.med.”.

6.3.5 Pricing algorithm

In the pricing step we solve binary knapsack problem instances to optimality by a
modified version of Pisinger’s MINKNAP algorithm [87], that combines dynamic
programming with bounding and reduction techniques to dynamically adjust the
core. Yet MINKNAP was devised for knapsack problems with integer coefficients,
while in our pricing subproblems the dual variables, as well as the multipliers in
Lagrangean relaxation, can be fractional. Instead of scaling the coefficients, that
implies the computation of the determinant of a matrix and can be very time-
consuming, we relaxed the bounding test so that the optimal solution computed
by the modified algorithm may differ from optimality by at most NKP ε, where
NKP is the number of variables left outside the core and ε is a very small positive
parameter. Although this technique gives slightly worse dual bounds, we found
that it has a clear computational advantage compared to the scaling approach.
In particular we considered values of ε in the range between 10−6 and 10−12: for
values higher than 10−6 the approximation is not tight; for values lower than 10−12

numerical problems may arise; in between these values we obtained tight approxi-
mations, and we observed that the computation time does not change significantly.

In general it is also possible to generate columns with negative reduced cost by
solving the pricing problem approximately. This is usually done when the pricing
problem is difficult to solve to optimality. However our computational experience
showed that this is not worth doing in this case, since the time required to solve
the binary knapsack is negligible compared with that needed to solve the LMP.

Column generation can be also speeded up by multiple pricing: instead of
inserting into the RLMP only the optimal column for each candidate median, if
any is found with negative reduced cost, it is worth adding more (suboptimal)
columns to enlarge the search space for the linear programming algorithm. This
is particularly useful at the root node, when the column pool is still empty and
the set of available columns may be small.

To this purpose we exploit the subgradient optimization algorithm and we

114 – Ch. 6 A B&P algorithm for the CPMP

insert into the RLMP the set of columns corresponding to each solution of the
LR for which the Lagrangean lower bound improves upon the best incumbent
Lagrangean lower bound.

Another method we devised to obtain promising columns consists of applying
local exchanges to the columns found at each column generation iteration. For each
candidate median, we consider the optimal cluster, that is the cluster described by
the column with the minimum reduced cost, and we generate all feasible clusters
obtained by the exchange of one vertex in the cluster with one vertex outside the
cluster. All columns generated in this way are added to the RLMP, provided that
their reduced cost is negative and that it is no more than 10% far away from the
optimal one.

In table 6.2, we present the computational results when (a) multiple pricing is
not used, (b) multiple columns are generated via local exchanges, and (c) multiple
columns are generated via subgradient optimization. For each policy we report the
number of iterations of the column generation algorithm (CGRoot), the number of
columns generated (ColsRoot) and the time spent (TimeRoot) at the root node.
In the same way for the search tree nodes we report the average number of column
generation iterations (CGTree), the number of columns generated (ColsTree) and
the time spent to complete the enumeration process (TimeTree). Finally we report
the number of nodes explored (Eval. Nodes).

In case (c) the number of column generation iterations and the time spent at the
root node are inferior. Moreover, the CPU time reported in case (c) includes the
time spent for the Lagrangean heuristic and the variable fixing routine. However in
case (c) we often observed an increase in the computation time required to complete
the overall enumeration process. This can be explained by at least two reasons:
first, when the optimum of the LMP is degenerate, the solution obtained in case
(c) has slightly more fractional variables; second, when the algorithm generates
less columns at the root node, the pool is scarcely useful and more columns must
be generated later during the exploration of other nodes.

6.3.6 Experimental results

We report in tables 6.3, 6.4, 6.5 and 6.6 detailed results on the computational
behavior of the branch-and-price algorithm when subgradient-based multiple pric-
ing is used. These tables, one for each class of instances, are composed by two
horizontal blocks: the first block contains experimental results for the root node,
while the second block refers to the whole search tree.

For the root node we report the number of column generation iterations needed
to reach optimality (CG it.), the number of columns generated (cols), the best
upper bound found (UB), the value of the LMP relaxation (LB), the gap between

(a) No multiple pricing
N p CGRoot ColsRoot TimeRoot(s) CGTree ColsTree TimeTree(s) Eval. nodes
50 5 107.3 4566.0 1.38 4.27 51.02 207.05 1304.6

12 77.7 3589.4 0.43 3.76 58.01 93.10 2770.0
16 73.7 3422.1 0.33 3.64 60.77 19.17 13707.7
20 71.4 3331.3 0.30 2.84 47.69 35.92 1727.0

100 10 168.8 15166.6 12.83 10.98 259.55 214.56 1336.5
25 137.9 13099.0 4.68 6.59 222.57 622.46 19984.2
33 132.6 12680.8 3.93 4.83 175.83 505.28 21048.5
40 130.4 12527.7 3.46 3.50 128.70 619.98 20357.2

Average 112.48 8547.86 3.42 5.05 125.52 289.69 10279.46

(b) Multiple pricing via local search
N p CGRoot ColsRoot TimeRoot(s) CGTree ColsTree TimeTree(s) Eval. nodes
50 5 80.7 25458.8 10.04 5.48 67.90 228.75 1288.0

12 64.5 10921.6 1.30 4.71 75.25 83.31 2318.0
16 62.9 8684.4 0.79 3.61 62.66 16.46 13230.3
20 61.4 7067.6 0.49 2.55 44.80 50.91 2324.6

100 10 133.5 129155.0 146.71 10.08 237.93 418.48 1187.3
25 117.3 50237.6 15.05 6.35 214.95 510.33 18263.3
33 116.0 39770.0 9.31 5.31 194.48 328.28 18751.4
40 114.3 33000.8 6.32 3.71 138.41 436.83 17172.5

Average 93.83 38036.98 23.75 5.23 129.55 259.17 9316.93

(c) Multiple pricing via subgradient optimization
N p CGRoot ColsRoot TimeRoot(s) CGTree ColsTree TimeTree(s) Eval. nodes
50 5 8.9 3526.7 0.77 12.65 109.90 189.11 1204.6

12 7.0 2139.1 0.55 6.93 95.97 90.45 2495.6
16 6.3 2274.6 0.51 5.34 80.00 15.46 13450.5
20 5.4 2341.6 0.51 4.06 62.68 49.40 2188.2

100 10 12.8 8299.3 3.53 20.76 416.74 543.60 1248.7
25 7.2 4887.1 2.46 8.16 258.21 115.67 18858.7
33 6.6 5222.8 2.33 6.56 235.11 467.95 18065.1
40 5.3 4612.3 1.83 5.56 199.96 795.43 17850.5

Average 7.44 4162.94 1.56 8.75 182.32 283.39 9420.24

Table 6.2: Comparison between different multiple pricing methods

the upper and lower bounds, that is UB−LB
LB

(gap). Moreover, we report the gap
between the upper bound at the root node and the best solution found during
the exploration of the search tree (UB gap = UB−F.UB

F.UB
) and the gap between the

initial LMP relaxation and the best solution found (LB gap = F.UB−LB
F.UB

). The
former evaluates the quality of the heuristic solution found by column generation,
the latter the quality of the LMP relaxation. Finally we include the CPU time
spent (time) and number of candidate medians fixed to 0 by the variable fixing
tests (fix.med.) at the root node.

For the search tree we report the average number of iterations of the column
generation algorithm (CG it.) and the average number of generated columns in
each node of the search tree (cols), the final upper and lower bounds (F.UB and
F.LB), the approximation obtained (gap), the CPU time spent in the optimization
(the tests for which computation exceeded time limit are marked with a dash), the
average number of variable fixing tests succeeded in each node of the search tree
(avg.fix.med.) and the number of nodes evaluated in the search tree (ev. nodes).

Instance Root Search tree
N p CG it. cols UB LB gap UB gap LB gap time(s) fix.med. CG it. cols F.UB F.LB gap time(s) avg fix.med. ev. nodes
50 5 cpmp01 13 2706 713 705 1.13% 0.00% 1.12% 0.60 28 16.00 139.84 713 713 0.00% 4.58 2.73 33

cpmp02 3 896 740 740 0.00% 0.00% 0.00% 0.15 0 0.00 0.00 740 740 0.00% 0.16 0.00 1
cpmp03 13 2755 751 749 0.27% 0.00% 0.27% 0.66 40 40.25 254.25 751 751 0.00% 2.43 0.00 5
cpmp04 4 1571 651 651 0.00% 0.00% 0.00% 0.28 0 0.00 0.00 651 651 0.00% 0.31 0.00 1
cpmp05 5 1441 664 664 0.00% 0.00% 0.00% 0.54 0 0.00 0.00 664 664 0.00% 0.56 0.00 1
cpmp06 3 1598 778 778 0.00% 0.00% 0.00% 0.30 0 0.00 0.00 778 778 0.00% 0.33 0.00 1
cpmp07 10 2650 787 779 1.03% 0.00% 1.11% 0.59 22 14.00 167.00 787 787 0.00% 7.13 3.06 37
cpmp08 11 2835 820 772 6.22% 0.00% 5.89% 0.86 2 20.63 210.05 820 820 0.00% 1904.73 3.61 11965
cpmp09 10 2575 715 713 0.28% 0.00% 0.34% 0.51 30 10.00 74.00 715 715 0.00% 1.00 4.00 5
cpmp10 9 1829 829 818 1.34% 0.00% 1.34% 0.78 17 10.57 97.99 829 829 0.00% 7.96 3.26 109
Average 8.1 2085.6 1.03% 0.00% 1.01% 0.53 13.9 11.14 94.31 0.00% 192.92 1.67 1215.8

100 10 cpmp11 11 5573 1007 1002 0.50% 0.10% 0.49% 2.16 40 19.50 414.58 1006 1006 0.00% 19.08 10.08 25
cpmp12 11 4896 969 959 1.04% 0.31% 0.78% 1.73 20 17.04 358.63 966 966 0.00% 93.51 7.13 211
cpmp13 13 5568 1026 1022 0.39% 0.00% 0.43% 2.94 66 38.86 809.07 1026 1026 0.00% 30.46 5.00 15
cpmp14 11 4880 985 972 1.34% 0.31% 1.04% 2.15 24 17.06 351.92 982 982 0.00% 232.13 6.47 425
cpmp15 12 5623 1092 1081 1.02% 0.09% 0.97% 2.55 28 17.86 311.71 1091 1091 0.00% 407.73 5.21 721
cpmp16 8 3940 955 952 0.32% 0.10% 0.28% 1.55 60 16.70 266.50 954 954 0.00% 5.70 4.14 11
cpmp17 13 4603 1034 1026 0.78% 0.00% 0.84% 2.26 33 17.06 249.75 1034 1034 0.00% 113.91 5.03 283
cpmp18 10 5053 1046 1032 1.36% 0.29% 1.06% 1.96 25 21.25 476.07 1043 1043 0.00% 877.95 6.35 1181
cpmp19 13 5567 1036 1027 0.88% 0.48% 0.46% 2.66 27 13.57 329.41 1031 1031 0.00% 18.03 5.18 45
cpmp20 11 4906 1022 974 4.93% 1.59% 3.22% 2.83 0 19.04 474.55 1006 993 1.31% – 8.87 9128
Average 11.3 5060.9 1.25% 0.33% 0.96% 2.28 32.3 19.79 404.22 0.13% 199.83 6.35 1204.5

150 15 cpmp21 10 6576 1294 1282 0.94% 0.47% 0.48% 4.02 26 14.97 526.78 1288 1288 0.00% 81.86 8.36 105
cpmp22 12 8969 1256 1248 0.64% 0.00% 0.65% 6.14 39 20.13 505.33 1256 1255 0.08% – 6.00 3182
cpmp23 11 7898 1279 1278 0.08% 0.00% 0.09% 5.29 90 8.50 230.00 1279 1279 0.00% 6.89 0.00 3
cpmp24 11 6461 1220 1219 0.08% 0.00% 0.13% 5.22 100 22.50 536.00 1220 1220 0.00% 8.35 0.00 3
cpmp25 10 6135 1193 1189 0.34% 0.00% 0.35% 5.15 68 29.81 918.35 1193 1193 0.00% 125.71 6.60 53
cpmp26 11 7240 1269 1259 0.79% 0.40% 0.41% 5.67 20 16.63 641.36 1264 1264 0.00% 184.92 16.11 121
cpmp27 10 7838 1330 1312 1.37% 0.53% 0.85% 5.54 15 17.58 599.31 1323 1320 0.23% – 12.26 3139
cpmp28 11 7200 1237 1231 0.49% 0.32% 0.20% 4.65 45 26.70 1030.20 1233 1233 0.00% 20.72 19.75 11
cpmp29 5 5850 1219 1219 0.00% 0.00% 0.00% 7.36 0 0.00 0.00 1219 1219 0.00% 7.56 0.00 1
cpmp30 13 8536 1205 1201 0.33% 0.33% 0.06% 5.41 53 61.50 4413.75 1201 1201 0.00% 34.76 12.75 5
Average 10.4 7270.3 0.51% 0.20% 0.32% 5.45 45.6 21.83 940.11 0.03% 58.85 8.18 662.3

200 20 cpmp31 11 9913 1379 1373 0.44% 0.07% 0.43% 10.20 49 31.01 1847.13 1378 1378 0.00% 1003.81 13.10 223
cpmp32 12 8687 1429 1410 1.35% 0.00% 1.34% 12.48 12 24.16 1803.95 1429 1419 0.70% – 7.82 1149
cpmp33 15 11154 1383 1362 1.54% 1.17% 0.38% 11.66 6 23.01 1659.16 1367 1367 0.00% 1420.90 21.10 557
cpmp34 12 11092 1385 1375 0.73% 0.00% 0.75% 13.34 44 25.67 1046.43 1385 1383 0.14% – 11.76 1425
cpmp35 10 8917 1442 1431 0.77% 0.35% 0.44% 8.75 23 19.77 920.21 1437 1437 0.00% 2662.50 16.06 1265
cpmp36 11 9638 1385 1379 0.44% 0.22% 0.27% 8.41 53 26.77 1611.16 1382 1382 0.00% 188.59 11.21 65
cpmp37 11 10360 1458 1455 0.21% 0.00% 0.26% 7.90 84 32.94 1730.03 1458 1458 0.00% 109.22 14.73 33
cpmp38 12 9379 1400 1373 1.97% 1.01% 0.99% 10.13 0 26.52 2195.10 1386 1381 0.36% – 21.93 1100
cpmp39 11 8568 1389 1370 1.39% 1.09% 0.31% 7.98 9 26.45 1998.51 1374 1374 0.00% 222.67 26.75 81
cpmp40 10 8967 1432 1414 1.27% 1.13% 0.20% 8.50 3 18.79 1351.40 1416 1416 0.00% 167.56 19.45 87
Average 11.5 9667.5 1.01% 0.50% 0.54% 9.93 28.3 25.51 1616.31 0.12% 825.04 16.39 598.5

Overall average 10.33 6021.08 0.95% 0.26% 0.71% 4.55 19.57 763.74 0.07% 319.16 920.28

Table 6.3: Branch-and-price with subgradient-based multiple pricing - Class α

Instance Root Search tree
N p CG it. cols UB LB gap UB gap LB gap time(s) fix.med. CG it. cols F.UB F.LB gap time(s) avg fix.med. ev. nodes
50 12 cpmp01 4 1285 387 374 3.48% 1.04% 2.52% 0.15 1 7.05 94.36 383 383 0.00% 5.75 5.25 165

cpmp02 6 1361 420 409 2.69% 1.94% 0.92% 0.26 1 7.75 142.25 412 412 0.00% 1.86 2.57 37
cpmp03 5 1201 405 399 1.50% 0.00% 1.67% 0.24 3 6.76 90.20 405 405 0.00% 4.38 4.46 107
cpmp04 6 1618 385 365 5.48% 0.26% 4.97% 0.33 0 8.08 102.44 384 384 0.00% 308.15 4.21 8075
cpmp05 4 880 429 419 2.39% 0.00% 2.38% 0.21 4 6.47 81.06 429 429 0.00% 11.19 4.61 359
cpmp06 5 1302 485 467 3.85% 0.62% 3.28% 0.28 1 7.97 118.55 482 482 0.00% 73.69 3.70 2633
cpmp07 5 1235 445 425 4.71% 0.00% 4.64% 0.33 0 7.74 97.50 445 445 0.00% 318.60 3.61 8431
cpmp08 6 1199 407 393 3.56% 0.99% 2.55% 0.34 2 6.70 100.49 403 403 0.00% 18.82 4.09 657
cpmp09 5 1227 452 423 6.86% 3.67% 3.11% 0.41 0 6.83 94.47 436 436 0.00% 23.68 5.42 623
cpmp10 5 1309 466 443 5.19% 1.08% 4.09% 0.41 1 6.51 93.69 461 461 0.00% 113.35 4.44 3607
Average 5.1 1261.7 3.97% 0.96% 3.01% 0.30 1.3 7.19 101.50 0.00% 87.95 4.24 2469.4

100 25 cpmp11 6 3101 549 529 3.78% 0.92% 2.77% 1.01 0 7.73 235.57 544 544 0.00% 2963.49 8.58 25757
cpmp12 5 2190 508 496 2.42% 0.79% 1.59% 0.80 2 6.94 169.11 504 504 0.00% 99.66 8.80 1017
cpmp13 5 2392 569 535 6.36% 2.15% 4.12% 0.76 0 8.56 337.38 557 546 2.01% – 2.25 32375
cpmp14 5 2938 556 530 4.91% 2.21% 2.67% 0.79 0 9.81 287.92 544 541 0.55% – 6.91 28074
cpmp15 5 2611 586 573 2.27% 0.51% 1.77% 0.90 3 7.56 196.19 583 583 0.00% 231.80 9.04 1707
cpmp16 6 2566 543 521 4.22% 0.93% 3.32% 1.08 0 8.25 299.15 538 530 1.51% – 3.20 36101
cpmp17 5 2352 551 536 2.80% 1.66% 1.14% 0.96 1 6.37 154.73 542 542 0.00% 6.60 9.17 53
cpmp18 8 4408 508 501 1.40% 0.00% 1.38% 1.33 10 10.89 342.38 508 508 0.00% 47.78 7.88 179
cpmp19 5 2879 562 531 5.84% 2.00% 3.69% 0.85 0 8.60 320.10 551 547 0.73% – 7.75 31511
cpmp20 4 1930 581 523 11.09% 1.57% 8.63% 1.04 0 7.98 300.49 572 537 6.52% – 0.06 32135
Average 5.4 2736.7 4.51% 1.27% 3.11% 0.95 1.6 8.27 264.30 1.13% 669.87 6.36 18890.9

150 37 cpmp21 6 4793 682 675 1.04% 0.15% 0.98% 2.01 4 10.36 380.63 681 681 0.00% 838.88 11.00 2685
cpmp22 5 2703 680 646 5.26% 1.80% 3.40% 2.21 0 8.43 463.76 668 654 2.14% – 0.94 13447
cpmp23 7 4599 682 643 6.07% 1.79% 4.17% 2.88 0 8.81 486.25 670 652 2.76% – 0.31 12794
cpmp24 6 4884 597 587 1.70% 0.51% 1.21% 2.01 2 8.83 361.28 594 594 0.00% 2365.36 11.56 8527
cpmp25 6 3893 636 628 1.27% 1.11% 0.29% 1.63 0 6.41 338.03 629 629 0.00% 24.07 7.50 103
cpmp26 6 4953 680 647 5.10% 4.13% 1.06% 1.86 0 8.66 392.74 653 653 0.00% 188.63 13.15 599
cpmp27 6 4138 771 714 7.98% 2.12% 5.51% 2.70 0 7.93 435.58 755 723 4.43% – 0.00 13355
cpmp28 5 3785 654 633 3.32% 1.55% 1.84% 1.58 0 8.75 472.12 644 641 0.47% – 10.97 14962
cpmp29 6 5180 670 641 4.52% 3.24% 1.29% 1.98 0 7.09 309.75 649 649 0.00% 472.24 17.00 2135
cpmp30 7 5092 634 619 2.42% 0.48% 1.90% 2.24 0 8.77 418.25 631 628 0.48% – 9.79 17376
Average 6.0 4402.0 3.87% 1.69% 2.17% 2.11 0.6 8.40 405.84 1.03% 777.84 8.22 8598.3

200 50 cpmp31 5 5421 748 712 5.06% 1.63% 3.29% 3.58 0 7.83 550.64 736 718 2.51% – 0.10 7376
cpmp32 5 4647 908 800 13.50% 3.42% 8.97% 4.42 0 6.34 346.10 878 806 8.93% – 0.00 6050
cpmp33 6 5397 726 694 4.61% 0.14% 4.32% 4.61 0 8.82 642.66 725 701 3.42% – 0.00 7024
cpmp34 6 4867 854 779 9.63% 0.00% 8.81% 5.64 0 7.40 402.77 854 785 8.79% – 0.00 6187
cpmp35 6 6955 763 728 4.81% 0.66% 4.07% 4.26 0 7.79 539.26 758 733 3.41% – 0.00 7504
cpmp36 7 7652 708 693 2.16% 0.71% 1.53% 4.96 0 8.13 586.80 703 697 0.86% – 3.77 7682
cpmp37 5 5700 785 744 5.51% 3.97% 1.54% 2.89 0 8.72 655.21 755 749 0.80% – 3.77 7898
cpmp38 5 4365 775 730 6.16% 0.00% 5.81% 4.20 0 7.89 531.62 775 735 5.44% – 0.00 6134
cpmp39 7 7417 736 713 3.23% 1.80% 1.44% 4.10 0 8.87 595.13 723 720 0.42% – 13.79 6916
cpmp40 6 6377 796 738 7.86% 0.38% 6.99% 5.74 0 7.83 454.32 793 745 6.44% – 0.00 6192
Average 5.8 5879.8 6.25% 1.27% 4.68% 4.44 0.0 7.96 530.45 4.10% – 2.14 6896.3

Overall average 5.58 3570.05 4.65% 1.30% 3.24% 1.95 7.96 325.52 1.57% 511.88 9213.73

Table 6.4: Branch-and-price with subgradient-based multiple pricing - Class β

Instance Root Search tree
N p CG it. cols UB LB gap UB gap LB gap time(s) fix.med. CG it. cols F.UB F.LB gap time(s) avg fix.med. ev. nodes
50 16 cpmp01 4 1537 305 296 3.04% 2.35% 0.67% 0.16 2 4.67 82.50 298 298 0.00% 0.42 1.00 7

cpmp02 3 814 338 328 3.05% 0.60% 2.38% 0.13 2 5.19 85.08 336 336 0.00% 3.51 2.92 143
cpmp03 4 1412 317 309 2.59% 0.96% 1.59% 0.15 0 4.80 79.50 314 314 0.00% 0.58 4.40 11
cpmp04 4 1280 303 297 2.02% 0.00% 2.29% 0.21 5 4.93 64.51 303 303 0.00% 2.23 2.91 71
cpmp05 5 1555 351 346 1.45% 0.00% 1.42% 0.25 2 5.06 79.44 351 351 0.00% 0.94 4.38 19
cpmp06 4 1019 403 387 4.13% 3.33% 0.90% 0.25 0 5.25 93.19 390 390 0.00% 0.75 1.00 17
cpmp07 5 1747 362 357 1.40% 0.28% 1.11% 0.30 5 4.36 69.29 361 361 0.00% 3.19 3.17 95
cpmp08 5 1237 363 323 12.38% 2.54% 8.86% 0.34 0 7.64 146.61 354 349 1.43% – 4.87 127066
cpmp09 4 1010 387 366 5.74% 3.75% 1.88% 0.27 0 4.16 62.05 373 373 0.00% 9.34 4.08 407
cpmp10 4 1042 399 376 6.12% 2.31% 3.79% 0.32 0 5.93 84.96 390 390 0.00% 143.78 2.98 5137
Average 4.2 1265.3 4.19% 1.61% 2.49% 0.24 1.6 5.20 84.71 0.14% 18.30 3.17 13297.3

100 33 cpmp11 4 2165 420 406 3.45% 1.45% 1.97% 0.56 0 6.27 217.97 414 414 0.00% 97.42 6.72 1053
cpmp12 5 4854 402 375 7.20% 2.81% 4.16% 0.75 0 8.11 303.72 391 387 1.03% – 6.11 34995
cpmp13 5 4169 446 441 1.13% 0.00% 1.23% 0.75 3 6.67 209.77 446 446 0.00% 30.25 6.09 203
cpmp14 4 1672 455 434 4.84% 1.79% 2.91% 0.70 0 7.19 270.52 447 443 0.90% – 6.19 39581
cpmp15 4 2686 517 470 10.00% 9.07% 0.98% 0.68 0 6.29 230.82 474 474 0.00% 135.43 2.82 1317
cpmp16 4 2483 454 431 5.34% 0.44% 4.77% 0.72 0 6.49 265.22 452 440 2.73% – 0.77 41818
cpmp17 5 3931 447 424 5.42% 3.71% 1.78% 0.81 0 6.46 210.82 431 431 0.00% 120.12 6.06 855
cpmp18 5 2211 462 431 7.19% 0.00% 6.78% 1.06 0 6.64 269.58 462 442 4.52% – 0.37 39287
cpmp19 5 3675 471 431 9.28% 5.84% 3.22% 0.87 0 6.39 189.70 445 445 0.00% 1399.44 7.08 12989
cpmp20 4 2772 470 451 4.21% 2.17% 1.96% 0.88 0 5.91 176.56 460 460 0.00% 847.31 7.81 9321
Average 4.5 3061.8 5.81% 2.73% 2.98% 0.78 0.3 6.64 234.47 0.92% 438.33 5.00 18141.9

150 50 cpmp21 6 4249 612 581 5.34% 0.00% 5.13% 3.46 0 6.45 363.75 612 588 4.08% – 0.00 15748
cpmp22 4 2694 590 540 9.26% 2.08% 6.60% 2.06 0 7.05 412.41 578 548 5.47% – 0.00 15096
cpmp23 5 4655 590 551 7.08% 3.87% 3.02% 2.52 0 7.31 448.29 568 559 1.61% – 1.53 15158
cpmp24 4 2917 522 496 5.24% 3.37% 1.95% 1.54 0 7.14 414.21 505 503 0.40% – 8.08 15747
cpmp25 4 3652 512 486 5.35% 4.92% 0.58% 1.21 0 6.64 439.24 488 488 0.00% 13.09 1.42 59
cpmp26 5 4893 547 526 3.99% 1.30% 2.65% 1.67 0 6.66 383.68 540 537 0.56% – 9.27 17439
cpmp27 5 5124 610 568 7.39% 5.35% 2.01% 2.17 0 7.84 398.79 579 578 0.17% – 10.40 14258
cpmp28 4 2385 511 499 2.40% 1.59% 0.80% 1.16 0 4.87 247.27 503 503 0.00% 72.69 4.76 483
cpmp29 5 5378 554 530 4.53% 0.00% 4.46% 1.77 0 6.52 376.30 554 535 3.55% – 0.03 17533
cpmp30 5 4010 521 488 6.76% 3.17% 3.50% 1.87 0 7.02 399.80 505 495 2.02% – 1.10 18879
Average 4.7 3995.7 5.73% 2.56% 3.07% 1.94 0.0 6.75 388.37 1.79% 42.89 3.66 13040.0

200 66 cpmp31 5 5247 579 572 1.22% 0.70% 0.68% 3.27 0 6.01 413.83 575 574 0.17% – 8.81 11898
cpmp32 4 5238 833 700 19.00% 7.07% 10.13% 3.67 0 5.08 282.11 778 705 10.35% – 0.00 8084
cpmp33 4 4901 654 600 9.00% 0.00% 8.39% 4.31 0 6.07 383.52 654 605 8.10% – 0.00 7349
cpmp34 6 5678 749 684 9.50% 0.00% 8.74% 6.74 0 6.71 489.37 749 691 8.39% – 0.00 6745
cpmp35 6 5718 631 593 6.41% 1.94% 4.29% 5.25 0 6.67 540.47 619 598 3.51% – 0.00 8535
cpmp36 5 5341 608 570 6.67% 0.00% 6.33% 4.76 0 6.58 456.59 608 574 5.92% – 0.00 7025
cpmp37 4 5787 655 617 6.16% 0.00% 5.88% 3.00 0 6.28 507.32 655 621 5.48% – 0.00 6898
cpmp38 5 4592 633 596 6.21% 4.11% 2.08% 3.86 0 6.53 524.49 608 601 1.16% – 2.34 9655
cpmp39 4 5743 609 574 6.10% 2.35% 3.60% 3.58 0 6.43 523.50 595 578 2.94% – 0.00 7995
cpmp40 4 3513 657 608 8.06% 1.55% 6.04% 4.11 0 6.44 469.29 647 613 5.55% – 0.00 7761
Average 4.7 5175.8 7.83% 1.77% 5.62% 4.25 0.0 6.28 459.05 5.16% – 1.11 8194.5

Overall average 4.53 3374.65 5.89% 2.17% 3.54% 1.80 6.22 291.65 2.00% 166.51 13168.43

Table 6.5: Branch-and-price with subgradient-based multiple pricing - Class γ

Instance Root Search tree
N p CG it. cols UB LB gap UB gap LB gap time(s) fix.med. CG it. cols F.UB F.LB gap time(s) avg fix.med. ev. nodes
50 20 cpmp01 3 1066 266 259 2.70% 0.00% 2.74% 0.13 2 4.91 74.95 266 266 0.00% 1.69 3.33 57

cpmp02 4 2107 300 293 2.39% 0.67% 1.85% 0.31 4 4.44 67.60 298 298 0.00% 3.43 1.91 79
cpmp03 3 1000 352 307 14.66% 13.18% 1.29% 0.21 0 4.06 71.38 311 311 0.00% 0.66 0.75 17
cpmp04 3 784 277 276 0.36% 0.00% 0.54% 0.15 6 2.69 40.75 277 277 0.00% 0.44 0.43 17
cpmp05 4 1550 360 355 1.41% 1.12% 0.42% 0.38 1 4.00 54.00 356 356 0.00% 0.57 3.67 5
cpmp06 4 1400 370 367 0.82% 0.00% 0.81% 0.26 6 3.00 8.50 370 370 0.00% 0.35 0.00 3
cpmp07 4 1356 359 357 0.56% 0.28% 0.28% 0.36 6 3.83 62.83 358 358 0.00% 0.60 3.60 7
cpmp08 4 914 322 298 8.05% 3.21% 4.78% 0.33 0 4.44 73.65 312 312 0.00% 44.90 2.90 2025
cpmp09 3 739 417 404 3.22% 1.21% 2.09% 0.29 0 3.86 64.30 412 412 0.00% 11.65 1.90 539
cpmp10 3 920 502 442 13.57% 9.61% 3.68% 0.39 0 4.48 77.35 458 458 0.00% 426.68 2.65 19429
Average 3.5 1183.6 4.77% 2.93% 1.85% 0.28 2.5 3.97 59.53 0.00% 49.10 2.11 2217.8

100 40 cpmp11 4 3381 446 406 9.85% 7.47% 2.21% 0.89 0 6.45 249.48 415 413 0.48% – 5.89 38912
cpmp12 4 2035 424 365 16.16% 11.58% 4.14% 1.04 0 5.93 237.71 380 373 1.88% – 1.88 42328
cpmp13 4 3955 424 405 4.69% 2.91% 1.74% 0.74 0 4.54 147.86 412 412 0.00% 430.11 4.05 4449
cpmp14 4 2230 474 413 14.77% 12.59% 1.97% 0.92 0 5.29 172.20 421 421 0.00% 352.47 3.72 3731
cpmp15 3 1924 526 489 7.57% 6.05% 1.44% 0.68 0 5.50 178.90 496 496 0.00% 737.53 5.60 9075
cpmp16 4 3423 435 425 2.35% 1.64% 0.86% 0.91 0 4.26 147.66 428 428 0.00% 95.71 2.95 1205
cpmp17 4 1848 475 430 10.47% 7.95% 2.27% 0.95 0 5.85 190.92 440 440 0.00% 1588.28 5.14 18091
cpmp18 5 3857 464 434 6.91% 3.11% 3.69% 1.13 0 5.75 191.39 450 450 0.00% 666.00 4.82 6675
cpmp19 5 2901 466 440 5.91% 3.56% 2.43% 1.57 0 5.25 197.79 450 450 0.00% 3587.27 4.90 40217
cpmp20 5 5076 523 476 9.87% 7.61% 2.19% 1.81 0 5.19 180.20 486 486 0.00% 533.02 4.71 4773
Average 4.2 3063.0 8.86% 6.45% 2.30% 1.06 0.0 5.40 189.41 0.24% 998.80 4.36 16945.6

150 60 cpmp21 6 4780 591 545 8.44% 7.07% 1.28% 3.23 0 5.81 367.01 552 552 0.00% 333.66 2.18 1481
cpmp22 4 4519 659 588 12.07% 9.65% 2.21% 2.46 0 6.06 385.59 601 595 1.01% – 2.40 18434
cpmp23 3 3160 597 540 10.56% 4.01% 5.99% 1.59 0 5.68 353.92 574 548 4.74% – 0.00 17100
cpmp24 4 2386 506 475 6.53% 1.61% 4.80% 2.01 0 5.91 367.48 498 480 3.75% – 0.02 17603
cpmp25 4 4910 478 428 11.68% 9.63% 1.90% 1.77 0 5.91 321.61 436 434 0.46% – 7.28 21154
cpmp26 4 2433 534 506 5.53% 3.89% 1.65% 2.70 0 5.36 329.25 514 511 0.59% – 4.34 16901
cpmp27 5 2838 772 715 7.97% 0.39% 7.09% 3.47 0 5.74 363.25 769 722 6.51% – 0.00 14311
cpmp28 4 4844 485 463 4.75% 2.75% 2.03% 1.58 0 5.39 292.07 472 469 0.64% – 5.39 23304
cpmp29 4 4988 524 488 7.38% 6.07% 1.21% 1.30 0 5.24 303.62 494 494 0.00% 1976.75 6.63 11337
cpmp30 5 7058 461 435 5.98% 3.83% 2.06% 1.96 0 5.84 335.76 444 441 0.68% – 6.93 19715
Average 4.3 4191.6 8.09% 4.89% 3.02% 2.21 0.0 5.69 341.95 1.84% 1155.21 3.52 16134.0

200 80 cpmp31 4 7505 567 528 7.39% 3.66% 3.50% 3.76 0 5.82 397.49 547 533 2.63% – 0.04 7983
cpmp32 4 3796 926 781 18.57% 9.20% 7.96% 5.80 0 5.94 500.34 848 788 7.61% – 0.00 7657
cpmp33 4 4155 575 548 4.93% 1.05% 3.72% 3.86 0 5.22 403.86 569 551 3.27% – 0.02 8852
cpmp34 6 6058 1043 835 24.91% 20.02% 4.01% 9.57 0 6.14 513.67 869 838 3.70% – 0.00 6097
cpmp35 4 4175 588 542 8.49% 3.34% 4.75% 4.57 0 5.44 453.69 569 545 4.40% – 0.00 8076
cpmp36 4 6777 581 538 7.99% 0.00% 7.42% 3.53 0 5.66 436.61 581 543 7.00% – 0.00 7576
cpmp37 5 7722 634 580 9.31% 3.59% 5.28% 5.64 0 5.65 437.58 612 584 4.79% – 0.00 6686
cpmp38 5 6375 635 587 8.18% 7.26% 0.85% 5.33 0 5.96 489.10 592 590 0.34% – 10.51 8422
cpmp39 4 3591 578 528 9.47% 0.00% 8.66% 4.95 0 5.20 366.94 578 532 8.65% – 0.00 5775
cpmp40 4 4433 632 571 10.68% 3.61% 6.40% 3.91 0 5.49 410.60 610 575 6.09% – 0.00 6401
Average 4.4 5458.7 10.99% 5.17% 5.26% 5.09 0.0 5.65 440.99 4.85% – 1.06 7352.5

Overall average 4.10 3474.23 8.18% 4.86% 3.11% 2.16 5.18 257.97 1.73% 734.37 10662.48

Table 6.6: Branch-and-price with subgradient-based multiple pricing - Class δ

120 – Ch. 6 A B&P algorithm for the CPMP

The number of column generation iterations and the number of generated
columns at the root node decrease as the ratio p

N
increases. This is especially

true moving from class α to class β. We explained this phenomenon with the fol-
lowing observation: when the ratio is high, there are several medians with similar
allocation pattern. The reduced cost of the corresponding columns is almost the
same and many columns are inserted into the RLMP at each column generation
iteration. On the opposite the performances of the primal heuristic worsen as the
ratio increases, as it is harder to find an optimal set of medians. Instances of class
γ are the hardest to solve for the branch-and-price algorithm: the average gap be-
tween the upper and lower bounds after one hour of computation and the number
of unsolved instances are higher than for the other classes. A similar behavior has
been observed for the uncapacitated version of the problem (see [21]). Finally we
ran our algorithm without time limit. It was able to solve to optimality 15 more
instances, and to reduce the average gap between the best known upper and lower
bounds below 1% before running out of memory.

Large scale instances. We tried to use our algorithm on even larger instances:
in order to obtain benchmark instances similar to those presented before, we used
the instances pmed-38, pmed-39 and pmed-40 for the uncapacitated p-median
problem from the OR Library, that involve 900 vertices, fixing the number of me-
dians to 90. We generated random weights as described in the previous section,
and set the capacity of each candidate median to 120. Our algorithm solved the
root problem in less than 40 minutes, producing solutions whose primal-dual gap
was less than 2.6%, 2.4% and 3.0%. No significant improvement was observed
in these bounds after some hours of computation. However this was expected:
no CPMP instance of this dimension has been solved so far, although larger in-
stances have been solved for the uncapacitated version of the problem. This puts
in evidence that the capacity constraints actually make the problem harder.

6.4 Benchmarks and experimental comparisons

6.4.1 Benchmark algorithms

General purpose solver. We solved the CPMP instances with CPLEX 6.5,
using the formulation of the CPMP presented in Section 6.2, tightened with the
inequalities xij ≤ yj. All the parameters were kept at the default values. These
include automatic dynamic generation of clique, cover and GUB-cover inequalities,
best-bound-first search strategy and a relative and absolute optimality tolerance
of 0.01% and 10−6 respectively.

Benchmarks and experimental comparisons 121

Lagrangean relaxation. Lagrangean relaxation has been successfully applied
to many combinatorial optimization problems; hence it is a good benchmark for
other methods. Pirkul’s branch-and-bound algorithm for the capacitated concen-
trators location problem [86], based on the Lagrangean relaxation of the parti-
tioning constraints, can be easily adapted to the CPMP. Also Baldacci et al. [6]
compared their algorithm with an adaptation of Pirkul’s algorithm. Following
[86] and [6], we implemented a branch-and-bound algorithm based on the La-
grangean relaxation of the semi-assignment constraints presented in Section 6.3.
The Lagrangean dual problem is solved by subgradient optimization. At most
300 subgradient iterations are executed at the root node, at most 50 iterations at
the other nodes of the first level search tree (where branching is done on location
variables) and at most 15 iterations at the nodes of the second level branching tree
(where branching is done on assignment variables). Primal bounds are computed
at each subgradient iteration by Pirkul’s procedure Heur2.

We also implemented alternative and faster bounding techniques proposed in
[86], namely evaluating the dual bound using the best Lagrangean penalties found
at the predecessor node in the search tree, and solving the linear relaxation of the
knapsack subproblems using a “good” set of multipliers.

More details on the adaptation of Pirkul’s algorithm to the CPMP can be
found in [14], where an alternative formulation is also discussed, consisting of the
relaxation of constraints (6.1) and (6.3).

6.4.2 Algorithms comparison

In tables 6.7 and 6.8, for every class of instances the column “v∗(gap)” reports the
optimal value if optimality was proven; otherwise it reports the gap between the
best primal and dual bounds obtained. As indicated in Subsection 6.2.4, compu-
tation was halted after one hour or in case of memory overflow. If computation
exceeded these resource limitations, the “time” column is marked with a dash
and the type of resource exceeded is indicated in the “status” column. The last
row of each block in the tables reports the average gap, the average computation
time (neglecting the tests that exceeded resource limitations) and the number of
problems solved to proven optimality.

From the examination of the gaps between the primal solution, the optimum
and the lower bound at the root node, the branch-and-price algorithm shows a good
behavior also when it is used as a heuristic. This is especially true for instances
in class α, where the best solution found is on the average 0.26% from optimality
after only 4.55 seconds. For all sizes considered CPLEX could solve to optimality
more instances in class β than the other algorithms.

The Lagrangean approach shows a completely different behavior, since it is
competitive even for large instances but only for small values of the p

N
ratio. When

122 – Ch. 6 A B&P algorithm for the CPMP

the number of medians increases, its performances significantly worsen. This is
easy to explain: for given N , when p is higher the first level branching tree grows
larger, since it is necessary to fix more location variables to reach a leaf node.

On the forty instances with N = 200, the primal solutions found by branch-
and-price after one hour were consistently better than those found by any of the
other algorithms considered. CPLEX was not able to find any feasible solution
within the time limit for 11 of these 40 instances. For the remaining 29 instances,
the average approximation error, computed with respect to the best known lower
bound, was 2.64% for the branch-and-price algorithm, while the approximation
error yielded by the Lagrangean relaxation algorithm was 7.57% and that given
by CPLEX more than 40%.

6.4.3 The algorithm of Baldacci, Hadjicostantinou, Maniezzo
and Mingozzi

In [6] Baldacci et al. proposed an algorithm (in the remainder we call it BHMM
for short) that is able to prove optimality of the solution found or to provide a
valid dual bound and therefore an a posteriori approximation guarantee.

BHMM adopts a three steps approach: a primal-dual bound gap is computed by
a procedure H1, that relies on Lagrangean relaxation (the same described above)
and subgradient optimization. The dual bound obtained is strengthened by a
procedure H2, that uses the linear relaxation of the CPMP reformulation as a set
partitioning problem, whose columns are the feasible clusters whose reduced costs
do not exceed the gap found in H1; the reduced costs are evaluated using the best
set of multipliers encountered. In order to reduce the problem size only the best
∆ clusters (∆ = 2000 in the implementation of [6]) for every candidate median
are considered. When a new dual bound (and the corresponding dual solution) is
obtained, a new set of columns is computed and an integer solution is obtained
using CPLEX (procedure EHP); that solution can be non-optimal, but a dual
bound based on the reduced cost of the best cluster discarded can either prove
optimality or provide information on the approximation obtained.

BHMM may behave as an optimization algorithm or as a heuristic depending
on the value of parameter ∆, which is user-controlled. Unfortunately it is not
known how ∆ must be chosen in order to have an a priori optimality guarantee:
once a value of ∆ has been guessed, it is possible that BHMM terminate providing
a suboptimal solution together with a lower bound. If the user wants to find the
optimal solution, he must guess a larger value of ∆ and try again and the pro-
cedure must be repeated until optimality is reached or the available computing
resources are exhausted. Obviously larger values of ∆ imply larger amounts of
computing time. On the contrary our branch-and-price algorithm does certainly

Benchmarks and experimental comparisons 123

yield the optimal solution, provided that the program is not aborted for insuffi-
cient computing resources. Hence when a difficult CPMP instance must be solved
to optimality one has two alternatives: either tentatively tuning ∆ according to
the available resources and running BHMM in the hope that the solution will be
provably optimal or running the branch-and-price algorithm in the hope that the
computing resources will be sufficient. Even if the two methods are of different
nature from a theoretical viewpoint, we tried to make a significant experimental
comparison since at the best of our knowledge they represent the state of the art to
solve the CPMP. To this purpose we set ∆ to the same value indicated in [6], that
is ∆ = 2000, which is large enough to often obtain provably optimal solutions and
small enough to make the algorithms comparable from the viewpoint of computing
time.

Moreover we had to address two other points, concerning the formulation of
the problem and the initialization of BHMM. In [6] the authors used a slightly less
general formulation of the CPMP, imposing that a vertex hosting a selected median
must belong to its cluster, that is xjj variables were used instead of yj as location
variables. ¿From a modelling viewpoint this assumption is a significant restriction
in capacitated problems: it can change the optimal solution (this is the case of
instance ccpx-7, class δ for example) and it can even inhibit the existence of feasible
solutions. For this reason we decided to address the more general formulation,
in which yj variables are introduced. However from an algorithmic viewpoint
the difference is negligible: we could easily adapt BHMM to the more general
formulation and we did not observe any significant change in its performances.

The second key issue to make a significant experimental comparison is initial-
ization. The computational results reported in [6] were obtained by initializing
procedure H1 with very tight primal bounds: the authors used solutions given by
a so-called “bionomic” algorithm described in [70] and these solutions are often
optimal; the initialization was made by taking such values increased by 1 as initial
upper bounds. However the computing time spent in the computation of so good
initial solutions took 10 minutes on an Intel Pentium 166MHz PC, as reported in
[70], and it was not considered in the presentation of the computational results in
[6]. On the contrary our branch-and-price algorithm does not require the knowl-
edge of quasi-optimal solutions in advance, because upper bounds are generated
inside the column generation procedure.

Therefore to make a fair comparison between the two techniques, we did the
following. First of all we initialized BHMM as in [6] and we compared the outcome
with the results reported by Baldacci et al., to validate our reimplementation of
their code, which had not been made available to us. The observed computing
times well correspond to those reported in [6] when they are scaled by a factor
10.8, which is the ratio between the speed of our hardware and that of the machine

124 – Ch. 6 A B&P algorithm for the CPMP

cited in [6], according to the LINPACK benchmark [31].
Then we compared the BHMM algorithm and the branch-and-price algorithm

under the usual hypothesis that nothing is known in advance: this means that
the branch-and-price algorithm started from scratch with no initialization, while
the BHMM algorithm was initialized with the best solution given by the bionomic
algorithm (the values were taken from [6], without increasing them by 1) and its
computing time was increased by a corresponding amount, equal to 10 minutes
divided by the scale factor given by the LINPACK benchmark: for the machine
used for the experiments reported in [70] such factor is about 15. The comparison
is reported in table 6.9 and it was necessarily limited to the instances of class α
for which the initial value given by the bionomic algorithm was known. As in [6],
computation was halted after one hour for the tests on instances with N = 50 and
N = 100, and after two hours on instances with N = 150 and N = 200. As in the
previous tables, the column “v∗(gap)” reports the optimal value if optimality was
proven, otherwise the best primal and dual bounds are shown and the “time” col-
umn is marked with a dash. For each instance, in the columns “Bionomic bound”
and “Optimum” the primal bound given by the bionomic algorithm and the op-
timal value (if known) are indicated. When the BHMM algorithm terminated
without proving optimality, we report both the best primal and dual bounds and
the time required. CPLEX 6.5 was used both as an LP solver and a IP solver in
the BHMM algorithm.

For instances with N = 50 both algorithms performed well: BHMM was slower,
due to the time needed by the bionomic algorithm to reach a good primal bound.
Branch-and-price solved to optimality one instance more than BHMM. For in-
stances with N = 100 and N = 150 BHMM was faster, but branch-and-price
proved the optimality of more instances and produced smaller primal-dual gaps.
For instances with N = 200 both BHMM and branch-and-price solved to optimal-
ity only 3 instances over 10. Once again BHMM was faster, but branch-and-price
gave tighter approximations.

6.4.4 Concluding remarks

The computational results presented in sections 6.3 and 6.4 show that the perfor-
mances of all algorithms we have considered are strongly affected both by the size
of the instance, that is the number of vertices, and by the value of the p

N
ratio. In

addition the algorithms show complementary behaviors. CPLEX is particularly
effective in solving the smaller instances and those of class β. However larger
problems are still too big to be efficiently managed by a general purpose solver:
no feasible solution was found for several of the instances with N = 200 after one
hour of computation.

Benchmarks and experimental comparisons 125

The Lagrangean-based branch-and-bound works fine for small values of p
N

(class
α), but its performance worsens quickly as this ratio increases. In fact, both
the quality of the lower bound and the effectiveness of the branching policy are
affected by high p

N
ratios. The branch-and-price algorithm shows a much more

stable behavior: it is effective on small problems, where no significant difference
can be observed within the four classes of instances, still giving tight upper and
lower bounds for the larger instances. A feasible solution is always found within a
few percentage points from optimality.

This suggests to use branch-and-price as an approximation method for large
CPMP problems: as an alternative approach, we investigated the behavior of
the BHMM algorithm initialized with upper bounds given by the bionomic meta-
heuristic. When both methods complete the computation within the time limit,
the BHMM algorithm is on average faster. However branch-and-price consistently
yields smaller gaps between upper and lower bounds, and is able to prove the op-
timality of a larger number of instances.

Class α Class β Class γ Class δ

Instance v∗ (gap) time (s) status v∗ (gap) time (s) status v∗ (gap) time (s) status v∗ (gap) time (s) status
N = 50 cpmp01 713 4.98 383 7.26 298 2.07 266 3.96

cpmp02 740 0.48 412 4.34 336 16.46 298 7.31
cpmp03 751 31.15 405 27.41 314 8.98 311 20.27
cpmp04 651 1.43 384 453.59 303 98.69 277 8.43
cpmp05 664 5.92 429 85.84 351 14.52 356 22.81
cpmp06 778 0.68 482 70.51 390 23.66 370 6.39
cpmp07 787 50.02 445 380.05 361 45.99 358 19.69
cpmp08 820 154.10 403 131.38 353 571.27 312 230.11
cpmp09 715 26.31 436 290.84 373 174.40 412 804.70
cpmp10 829 127.49 461 551.10 390 530.10 458 646.66

0.000% 40.256 10 0.000% 200.232 10 0.000% 148.614 10 0.000% 177.033 10
N = 100 cpmp11 1006 423.55 544 969.41 414 80.13 415 696.14

cpmp12 966 142.38 504 2045.81 391 1691.34 377 1092.72
cpmp13 1026 50.01 555 1788.78 446 100.56 412 365.01
cpmp14 982 929.99 544 2279.67 447 1897.32 421 1624.19
cpmp15 1091 1111.13 583 700.60 474 323.27 496 1158.77
cpmp16 954 176.70 (550;529) – (a) (455;447) – (a) 428 1261.00
cpmp17 1034 577.67 542 261.86 431 46.31 440 2612.34
cpmp18 1043 1129.22 508 223.17 456 3223.04 450 690.38
cpmp19 1031 557.86 551 3538.42 445 2107.70 450 1607.81
cpmp20 (1061;995) – (a) (611;533) – (a) 460 1925.53 (–;458) – (a)

0.663% 869.952 9 1.860% 1900.980 8 0.179% 1499.630 9 (0.000%) 1234.262 9
N = 150 cpmp21 1288 481.72 (1292;672) – (a) (760;581) – (a) (1466;539) – (a)

cpmp22 (1256;1251) – (a) (876;645) – (a) (1364;535) – (a) (–;575) – (a)
cpmp23 1279 665.76 (706;653) – (a) (1652;542) – (a) (1474;535) – (a)
cpmp24 (1254;1213) – (a) 594 1235.17 (1241;492) – (a) (491;484) – (a)
cpmp25 1193 430.84 629 204.04 488 1330.24 (1044;427) – (a)
cpmp26 1264 1502.08 653 886.45 (750;528) – (a) 512 589.29
cpmp27 1323 3463.23 (1540;701) – (a) (1967;560) – (a) (–;668) – (a)
cpmp28 1233 455.58 644 473.86 503 138.68 471 1199.79
cpmp29 1219 202.37 649 390.83 (545;544) – (a) 494 347.70
cpmp30 1201 156.56 630 896.90 (1234;487) – (a) 444 163.33

0.378% 1462.320 8 25.588% 1861.870 6 98.966% 3052.720 2 (61.680%) 2102.900 4
N = 200 cpmp31 (1439;1371) – (a) (1545;710) – (a) 575 396.79 (726;526) – (a)

cpmp32 (1472;1411) – (a) (–;776) – (a) (-;680) – (a) (–;722) – (a)
cpmp33 (1406;1363) – (a) (781;701) – (a) (1492;594) – (a) (–;545) – (a)
cpmp34 (2466;1372) – (a) (–;762) – (a) (832;666) – (a) (–;776) – (a)
cpmp35 (1494;1431) – (a) (1462;723) – (a) (–;585) – (a) (1781;533) – (a)
cpmp36 1382 1089.73 701 2949.48 (662;573) – (a) (–;534) – (a)
cpmp37 1458 936.61 753 1809.92 (1341;614) – (a) (1464;578) – (a)
cpmp38 (–;1370) – (a) (1533;729) – (a) (646;606) – (a) (–;576) – (a)
cpmp39 1374 976.39 (835;712) – (a) (610;584) – (a) (563;536) – (a)
cpmp40 1416 2878.57 (1484;736) – (a) (678;614) – (a) (–;563) – (a)

(10.731%) 2707.790 4 (57.554%) 3368.600 2 (41.440%) 3285.100 1 (107.613%) 3697.240 0
(a) = computation exceeded time limit; (b) = out of memory

Table 6.7: CPLEX 6.5

class α class β class γ class δ

Instance v∗(gap) time (s) status v∗(gap) time (s) status v∗(gap) time (s) status v∗(gap) time (s) status
N = 50 cpmp01 713 0.17 383 12.35 298 3.4 266 440.37

cpmp02 740 0.06 412 1.19 336 271.86 298 2423.56
cpmp03 751 0.13 405 8.85 314 18.49 311 77.54
cpmp04 651 0.07 384 910.32 303 85.28 277 256.79
cpmp05 664 0.09 429 308.33 351 22.15 356 216.23
cpmp06 778 0.09 482 256.78 390 272.26 370 39.49
cpmp07 787 0.8 445 715.14 361 107.85 358 42.29
cpmp08 820 17.54 403 153.58 (365;322) - (a) (313;290) - (a)
cpmp09 715 0.92 436 91.26 373 165.14 (418;365) - (a)
cpmp10 829 2.85 461 647.89 (390;368) - (a) (481;403) - (a)

0.000% 2.272 10 0.000% 310.569 10 1.933% 118.304 8 4.181% 499.467 7
N = 100 cpmp11 1006 3.26 (544;527) - (a) (439;405) - (a) (435;400) - (a)

cpmp12 966 15.26 (509;496) - (a) (394;374) - (a) (393;362) - (a)
cpmp13 1026 1.32 (567;534) - (a) (451;439) - (a) (425;402) - (a)
cpmp14 982 47.97 (548;529) - (a) (481;433) - (a) (442;411) - (a)
cpmp15 1091 32.33 (593;570) - (a) (481;468) - (a) (504;482) - (a)
cpmp16 954 8.17 (558;518) - (a) (453;430) - (a) (430;423) - (a)
cpmp17 1034 42.49 542 1673.37 (439;424) - (a) (795;427) - (a)
cpmp18 1043 39.94 508 977.96 (493;429) - (a) (500;429) - (a)
cpmp19 1031 18.92 (562;531) - (a) (473;430) - (a) (498;437) - (a)
cpmp20 1005 3377.63 (597;514) - (a) (483;448) - (a) (1630;463) - (a)

0.000% 358.729 10 4.936% 1325.660 2 7.196% - 0 40.554% - 0
N = 150 cpmp21 1288 227.11 (683;674) - (a) (626;580) - (a) (585;543) - (a)

cpmp22 1256 1100.95 (665;643) - (a) (599;537) - (a) (992;582) - (a)
cpmp23 1279 62.43 (711;639) - (a) (659;548) - (a) (1235;528) - (a)
cpmp24 1220 288.73 (603;585) - (a) (533;495) - (a) (518;471) - (a)
cpmp25 1193 29.55 (634;627) - (a) (499;484) - (a) (461;427) - (a)
cpmp26 1264 48.11 (653;646) - (a) (565;526) - (a) (530;504) - (a)
cpmp27 1323 1795.07 (837;711) - (a) (631;566) - (a) (2859;694) - (a)
cpmp28 1233 74.16 (647;630) - (a) (526;498) - (a) (493;462) - (a)
cpmp29 1219 11.70 (656;641) - (a) (565;529) - (a) (505;488) - (a)
cpmp30 1201 11.61 (641;619) - (a) (515;487) - (a) (472;434) - (a)

0.000% 364.942 10 4.762% - 0 8.758% - 0 56.609% - 0
N = 200 cpmp31 1378 482.48 (767;711) - (b) (590;570) - (a) (590;527) - (b)

cpmp32 (1447;1404) - (a) (1580;789) - (b) (1699;694) - (b) (- ;732) - (b)
cpmp33 (1385;1360) - (a) (765;693) - (b) (751;598) - (a) (662;547) - (a)
cpmp34 (1385;1372) - (a) (1137;770) - (b) (915;677) - (a) (- ;788) - (b)
cpmp35 1437 2982.44 (801;725) - (b) (636;592) - (a) (630;540) - (b)
cpmp36 1382 100.30 (717;690) - (b) (615;569) - (a) (574;537) - (a)
cpmp37 1458 259.51 (783;743) - (a) (679;615) - (b) (668;578) - (b)
cpmp38 (1390;1369) - (a) (839;730) - (b) (645;595) - (b) (764;581) - (b)
cpmp39 1374 106.60 (736;712) - (a) (620;573) - (b) (600;528) - (b)
cpmp40 1416 1300.01 (842;735) - (b) (712;606) - (b) (1366;568) - (b)

0.738% 871.89 6 21.882% - 0 26.908% - 0 (32.217%) - 0

(a) = computation exceeded time limit; (b) = out of memory

Table 6.8: Branch-and-bound with Lagrangean relaxation

Problem BHMM + bionomic bound Branch-and-price
N p Instance Bionomic bound Optimum v∗ (gap) time(s) v∗ (gap) time(s)
50 5 ccpx1 713 713 713 40.25 713 4.58

ccpx2 740 740 720 40.08 740 0.16
ccpx3 751 751 751 40.16 751 2.43
ccpx4 651 651 651 40.07 651 0.31
ccpx5 664 664 664 40.15 664 0.56
ccpx6 778 778 778 40.08 778 0.33
ccpx7 787 787 787 41.24 787 7.13
ccpx8 820 820 (820;790) - 820 1904.73
ccpx9 715 715 715 40.28 715 1.00
ccpx10 829 829 829 44.41 829 7.96
Average 0.38% 40.74 0.00% 2.72

100 10 ccpx11 1006 1006 1006 42.20 1006 19.08
ccpx12 966 966 966 133.83 966 93.51
ccpx13 1026 1026 1026 40.62 1026 30.46
ccpx14 982 982 982 125.23 982 232.13
ccpx15 1091 1091 1091 90.04 1091 407.73
ccpx16 954 954 954 40.95 954 5.70
ccpx17 1034 1034 1034 57.67 1034 113.91
ccpx18 1043 1043 (1043;1040) 179.14 1043 877.95
ccpx19 1031 1031 1031 43.48 1031 18.03
ccpx20 1013 1005 (1013;985) - (1006;993) -
Average 0.31% 71.75 0.13% 115.07

150 15 ccpx21 1290 1283 (1283;1279) 3952.79 1283 4119.65
ccpx22 1292 1291 1291 206.04 1291 450.46
ccpx23 1220 (1219;1192) - (1216;1207) -
ccpx24 1236 1235 (1235;1230) 470.59 1235 5143.87
ccpx25 1189 1188 1188 40.72 1188 3.94
ccpx26 1228 1227 1227 40.63 1227 4.37
ccpx27 1270 1269 1269 208.40 1269 730.71
ccpx28 1181 1180 1180 49.49 1180 391.48
ccpx29 1260 (1259;1248) 6389.09 (1262;1250) -
ccpx30 1243 1241 (1241;1236) 2291.95 (1241;1239) -
Average 0.57% 109.05 0.19% 316.19

200 20 ccpx31 1447 1446 1446 294.68 1446 3827.76
ccpx32 1352 (1351;1336) - (1358;1344) -
ccpx33 1391 1390 1390 40.45 1390 10.47
ccpx34 1395 (1394;1362) - (1393;1374) -
ccpx35 1401 (1400;1382) - (1401;1389) -
ccpx36 1384 1382 (1382;1378) 2643.33 (1382;1380) -
ccpx37 1399 (1398;1370) - (1388;1379) -
ccpx38 1462 (1461;1438) - (1476;1447) -
ccpx39 1427 (1426;1421) 1013.62 (1426;1425) -
ccpx40 1393 1392 1392 41.20 1392 12.94
Average 0.91% 125.44 0.62% 1283.72

Table 6.9: Comparison between BHMM and branch-and-price

Appendix

Primal heuristic:

Input: zk ∀k ∈ Z

(the solution of LRMP)

Output: Cj ∀j ∈ M
(the set of clusters of a feasible solution for CPMP)

(Step 1: medians selection)

fij =
∑

k∈Zj xk
i z

j
k ∀i ∈ N ∀j ∈ M

ψj =
∑

i∈N fij ∀j ∈ M
M̄ := ∅
for p times do

j∗ := argmaxj∈M\M̄{ψj}

M̄ := M̄ ∪ {j∗}

(Step 2: direct assignment)

forall j ∈ M̄ do qj := Qj

NW := N
C1 := C2 := . . . := CM := ∅
while NW 6= ∅ do

(evaluation of regret values)

forall i ∈ NW do

Mi = {j | j ∈ M̄, qj ≥ wi}
if Mi = ∅ then GOTO step 3

j′i := argmaxj∈Mi{fij}
if Mi = {j′i} then Di := +∞
else

j′′i := argmaxj∈Mi,j 6=j′i
{fij}

Di := fij′ − fij′′

(assignment of the node with highest regret)

i∗ := argmaxi∈NW
{Di}

j∗ := j′i∗

Cj∗ := Cj∗ ∪ {i∗}
NW := NW \ {i∗}
qj∗ := qj∗ − wi∗

(Step 3: assignment through exchanges)

while NW 6= ∅ do

forall i ∈ NW do

(Evaluation of the set of clusters in which node i could be inserted)

Li = {j | ∃k ∈ Cj | qj + wk ≥ wi, wk < wi, j ∈ M̄}

130 – Ch. 6 A B&P algorithm for the CPMP

forall j ∈ Li do

l(i, j) := min k∈Cj{(qj + wk) | qj + wk ≥ wi, wk < wi}
k(i, j) := argmin{l(i, j)}

if
⋃

i∈NW
Li 6= ∅ then

(Shifting that minimizes the residual capacity of a median)

(i∗, j∗) := argmini∈NW ,j∈Li
{l(i, j) − wi}

Cj∗ := Cj∗ \ {k(i∗, j∗)}; Cj∗ := Cj∗ ∪ {i∗}
qj∗ := l(i∗, j∗) − wi∗

NW := NW \ {i∗}
if ∃j ∈ M̄ | qj ≥ wk(i∗,j∗) then

Cj := Cj ∪ {k(i∗, j∗)}
qj := qj − wk(i∗,j∗)

else NW := NW ∪ {k(i∗, j∗)}
else FAIL

(Step 4: solution improvement)

if NW = ∅ then

(definition of a dummy node Ω)
wΩ = 0; dΩj = 0 ∀j ∈ M

forall j ∈ M̄, forall i ∈ Cj do si := j

do

forall i ∈ N do

forall j ∈ M̄ do

E
j
i = {k ∈ Cj ∪ {Ω} | qj + wk ≥ wi, qsi

+ wi ≥ wk}
gi := min

(j∈M̄,k∈Ej
i)
{dij − disi

+ dksi
− dkj}

(j′i, k
′
i) := argmin

(j∈M̄,k∈Ej
i)
{dij − disi

+ dksi
− dkj}

i∗ := argmini∈N {gi}; j∗ := j′i∗; k∗ := k′i∗

if (gi∗ < 0) then

qsi∗
:= qsi∗

+ wi∗ − wk∗

qj∗ := qj∗ − wi∗ + wk∗

if (k∗ 6= Ω) then

Cj∗ := Cj∗ \ {k∗}; Csi∗ := Csi∗ ∪ {k∗}
sk∗ := si∗

Csi∗ := Csi \ {i∗}; Cj∗ := Cj∗ ∪ {i∗};
si∗ := j∗

while gi∗ < 0

Chapter 7

A computational evaluation of a
general branch-and-price
framework for capacitated
network location problems

The purpose of this paper is to illustrate a general framework for network loca-
tion problems, based on column generation and branch-and-price. In particular
we consider capacitated network location problems with single-source constraints.
We consider several different network location models, by combining cardinality
constraints, fixed set-up costs, concentrator restrictions and regional constraints.
Our general branch-and-price-based approach can be seen as a natural counter-
part of the branch-and-cut-based commercial ILP solvers, with the advantage of
exploiting the tightness of the lower bound provided by the set partitioning refor-
mulation of network location problems. Branch-and-price and branch-and-cut are
compared through an extensive set of experimental tests.

7.1 Introduction

Finding the optimal location for facilities like warehouses or servers in distribution
or telecommunication networks and deciding how to allocate clients to them is
a very complex task, since it requires to solve NP-hard combinatorial problems.
Classical and well-studied examples are the Capacitated Facility Location Problem
and the P-Median Problem [59]; integer linear programming has shown to be the
most appropriate tool for modelling these problems. When tackling an integer
linear programming problem, one has the choice between using a general-purpose
solver and designing an “ad hoc” algorithm. The most common general-purpose

132 – Ch. 7 A B&P framework for capacitated network location

solvers for integer linear programming problems, like ILOG CPLEX and others, use
branch-and-cut methods. They combine powerful linear programming solvers with
suitable subroutines able to detect violated inequalities and branching strategies
to develop a search tree.

The purpose of this paper is to illustrate a general framework for network loca-
tion problems, which is based on column generation and branch-and-price. In par-
ticular we concentrate on capacitated network location problems with single-source
constraints. We consider several different network location models, by combining
cardinality constraints, fixed set-up costs, concentrator restrictions and regional
constraints and we illustrate how all of them can be solved in almost the same way
by a generalization of a branch-and-price algorithm we recently designed for the
Capacitated P-Median Problem [18].

It is clear that for each particular problem we consider it should be possible
to develop more effective “ad hoc” algorithms, both following the branch-and-cut
approach and the branch-and-price one (and possibly others, such as Lagrangean
relaxation and branch-and-bound): however the accent here is put on generality
and flexibility. Our goal in this study was to develop a kind of branch-and-price
equivalent of the branch-and-cut-based commercial ILP solvers. Apart from be-
ing available for free for research purposes, our branch-and-price framework has
the advantage of exploiting the tightness of the lower bound provided by the set
partitioning reformulation of network location problems.

The outline of the paper is as follows. In Section 7.2 we report the models of the
single-source capacitated location problems we consider and we review the relevant
literature and the solution methods proposed so far. In Section 3 we describe our
branch-and-price framework. In Section 4 we review the main algorithmic features
of a general-purpose ILP solver we used as a benchmark. In Section 5 we present
our experimental results. Conclusions are outlined in Section 6.

7.2 Single-source capacitated location problems

In a basic facility location scenario the best trade-off has to be found between the
cost for building facilities at certain sites and the cost to serve customers. Here
we consider min-sum objective functions, where service costs are assumed to be
proportional to the distance between each customer and the facility to which it
is assigned. The cost of building facilities can be taken into account into two
different ways: either with an additional term in the objective function or with a
constraint (or both). In the former case fixed set-up costs are specified for each
candidate site; these costs are to be payed when a facility is set up at that site. In
the latter case a cardinality constraint is added to the model, so that the number
of available facilities is bounded from above. In this section we briefly review the

Single-source capacitated location problems 133

mathematical formulations of network facility location problems with fixed set-up
costs and cardinality constraints. Then we also outline the formulation of the
same problems when regional constraints are added. All problems we consider
have capacitated facilities and single-source constraints, so that it is not allowed
to split customers’ demands on more than one facility.

The following definitions apply to all models considered in the remainder of
this paper. We are given a set N of customers and a set M of candidate sites
where facilities can be located. An integer weight wi represents the demand of each
customer i ∈ N . The capacity of a facility built in each site j ∈ M is represented
by an integer Qj. Integer coefficients dij (usually referred to as distances) describe
the cost of allocating customer i ∈ N to a facility located in site j ∈ M. We
assume that dij ≥ 0 ∀i ∈ N , j ∈ M.

7.2.1 Fixed set-up costs

The set-up cost for a facility in each site j ∈ M is represented by an integer
coefficient fj. The problem in which fixed set-up costs are incurred is known as
Capacitated Facility Location Problem with Single Source constraints (SS-CFLP).

A formulation for the SS-CFLP is the following:

SS − CFLP) min v =
∑

i∈N

∑

j∈M

dijxij +
∑

j∈M

fjyj (7.1)

s.t.
∑

j∈M

xij = 1 ∀i ∈ N (7.2)

∑

i∈N

wixij ≤ Qjyj ∀j ∈ M (7.3)

xij ∈ {0, 1} ∀i ∈ N ,∀j ∈ M (7.4)

yj ∈ {0, 1} ∀j ∈ M (7.5)

Binary variables x are assignment variables: xij = 1 if and only if customer i
is served by a facility located in site j. Binary variables y correspond to location
decisions: yj = 1 if and only if site j is selected to host a facility. The objective
is to minimize the sum of allocation costs depending on x variables and set-up
costs depending on y variables. Set partitioning constraints (7.2) impose that
each customer is assigned to a facility. Capacity constraints (7.3) impose that the
sum of the customers’ demands assigned to a same facility does not exceed the
capacity of the facility; these constraints also forbid the assignment of customers
to sites which do not host facilities.

134 – Ch. 7 A B&P framework for capacitated network location

To strengthen the linear relaxation of this formulation, disaggregated inequal-
ities

xij ≤ yj, ∀i ∈ N , j ∈ M (7.6)

are introduced. They arise from constraints (7.3), and the aggregated demand
constraint

∑

j∈M

Qjyj ≥
∑

i∈N

wi. (7.7)

When single-source constraints are relaxed, that is x variables have a continu-
ous domain in the range [0, 1], the Capacitated Facility Location Problem (CFLP)
arises. The CFLP has been extensively studied and the literature on it is quite
rich. Erlenkotter [93] proposed an algorithm in which the continuous relaxation
of (7.1) - (7.6) is used as a dual bound. Effective optimization algorithms for the
CFLP have been developed through Lagrangean methods [22] and cross decom-
position [94]. These algorithms allow to solve problem instances involving up to
50 customers and 50 candidate sites. More recent approaches are due to Aardal
[2], who exploits the polyhedral structure of the problem to design an effective
branch-and-cut algorithm, and to Klose et al. [60], who apply Dantzig-Wolfe de-
composition and column generation to obtain better bounds. Aardal [2] attacked
instances with up to 100 customers and 75 facilities, proving the optimality of the
solutions provided; Klose et al. [60] obtained good approximations on problems
with up to 500 customers and 200 candidate facilities, and solved to optimality
problem instances with up to 200 customers embedding their column generation
routine in a branch-and-price algorithm. Daskin [25] and Drexl [59] give detailed
surveys on the CFLP.

The methods proposed in the literature for the single-source constraints could
solve only smaller instances. Also in this case, Lagrangean relaxation can be used
to design branch-and-bound methods. Dualization of the capacity constraints (7.3)
is discussed in Klincewitz et al. [58], where the authors solve problem instances
with 50 customers in few minutes. Pirkul [86] obtained better results by dualizing
the partitioning constraints (7.2): he could solve instances with 100 customers
and 20 candidate facilities. Holmberg et al. [49] proposed to couple a Lagrangean
relaxation of the capacity constraints with a repeated matching heuristic, to solve
problem instances involving up to 200 customers and 30 candidate facilities in some
minutes. A column generation approach for the SS-CFLP was proposed by Neebe
and Rao [82], who solved problem instances with more than 35 customers and 25
facilities. More recently Fernandez and Diaz [28] implemented a new branch-and-
price method, which solved to optimality instances with up to 90 customers and
30 facilities in a few hours.

Single-source capacitated location problems 135

7.2.2 Concentrators

When the set of customers and the set of candidate sites coincide, the result-
ing problem is called Capacitated Concentrator Location Problem (CCLP) [45].
This variant has received much attention in telecommunication networks design,
where facilities represent electronic devices and customers represent terminals on
a telecommunication network. In the CCLP each location variable yj can be re-
placed by a corresponding assignment variable xjj. Although some authors [86]
used the name “Capacitated Concentrators” to indicate the SS-CFLP, we follow
[63] and [62] and we indicate as “concentrator problems” the models in which
variables xjj replace variables yj to represent location decisions.

The mathematical formulation of the CCLP is as follows:

CCLP) min v =
∑

i∈N

∑

j∈M

dijxij +
∑

j∈M

fjxjj

s.t. (7.2), (7.4)
∑

i∈N

wixij ≤ Qjxjj ∀j ∈ M (7.8)

xij ≤ xjj ∀i ∈ N , j ∈ M (7.9)
∑

j∈M

Qjxjj ≥
∑

i∈N

wi (7.10)

The polyhedral structure of these problems has recently been studied in detail
by Labbé and Yaman [63] [62]. Problems on networks with up to 100 terminals
can be solved to optimality with a branch-and-cut approach in half an hour of
CPU time.

7.2.3 Cardinality constraints

When the set-up costs are taken into account through a limit on the number
of facilities that can be built, the resulting problems are usually called “median
problems”. The most basic problem of this type is the p-Median Problem (PMP),
which is the discrete counterpart of the famous multi-source Fermat-Weber prob-
lem [90]. The PMP consists in partitioning the vertices of a given graph into p
subsets and to choose a median vertex in each subset, minimizing the sum of the
distances between each vertex of the graph and the median of its subset. The PMP
arises in many different contexts such as network design, telecommunications, dis-
tributed database design, transportation and distribution logistics. Kariv and
Hakimi [53] proved that the PMP is NP-hard. Optimization algorithms based
on Lagrangean relaxation have been proposed by Narula et al. [80], Cornuéjols et
al. [24], Christofides and Beasley [21] and Beasley [9]; approaches based on dual

136 – Ch. 7 A B&P framework for capacitated network location

formulations are illustrated in Galvao [40] and Hanjoul and Peeters [46]. Among
the most recent contributions we cite the branch-and-cut-and-price algorithm by
Avella et al. [3], the branch-and-price algorithm by Senne et al. [97] and the
semi-Lagrangean relaxation algorithm by Beltran et al. [10]. The most successful
approach is that of Avella et al.: an instance on a graph with 3795 vertices, in
which 150 facilities have to be selected was solved, even though this optimization
took several hours of CPU time. A survey on the PMP can be found in Labbé et
al. [61].

Here we consider the capacitated version of the problem, that is the Capacitated
PMP (CPMP), that can be formulated as follows.

CPMP) min v =
∑

i∈N

∑

j∈M

dijxij

s.t. (7.2), (7.3), (7.4), (7.5), (7.6)
∑

j∈M

yj = p

Algorithms devised for the uncapacitated PMP cannot be adapted to the
CPMP in a straightforward way: even finding a feasible solution is NP-complete
when capacities are considered. Recent contributions to the literature on the
CPMP include the algorithm of Baldacci et al. [6], which can give “a posteriori”
guarantee on optimality or the approximation achieved and a branch-and-price
algorithm of Ceselli and Righini [18]. The branch-and-price approach solved prob-
lems on graphs with up to 200 vertices and any number of medians in less than
two hours of computation.

Very recently, two heuristic algorithms for the CPMP have been presented:
Lorena and Senne [69] followed a column generation approach, finding good so-
lutions on real instances with up to 402 vertices, while Diaz and Fernández [29]
attacked an instance with 737 vertices through hybrid scatter search and path
relinking.

Both Baldacci et al. [6] and Lorena and Senne [69] replaced the location vari-
ables yj with the assignment variables xjj, so that each median is forced to be
coincident with one of the vertices of its cluster. To be consistent with the terminol-
ogy explained above, we indicate this problem as the Capacitated P-Concentrator
Location Problem (CPCLP).

Single-source capacitated location problems 137

CPCLP) min v =
∑

i∈N

∑

j∈M

dijxij

s.t. (7.2), (7.8), (7.4), (7.9), (7.10)
∑

j∈M

xjj = p

As reported by Ceselli [15], this restriction can change the optimal solution or
even inhibit the existence of feasible solutions.

7.2.4 Regional Constraints

A region is defined as a subset of candidate sites; a regional constraint imposes
an upper or lower bound to the number of facilities that can be built in a cer-
tain region. Regional constraints are usually employed to enforce equity in the
geographical distribution of the facilities. Following Syam [99] and Murray and
Gerrard [79], we formulate the SS-CFLP with regional constraints (RCSS-CFLP)
as follows:

RCSS − CFLP) min v =
∑

i∈N

∑

j∈M

dijxij +
∑

j∈M

fjyj

s.t. (7.2), (7.3), (7.4), (7.5), (7.6), (7.7)
∑

j∈R

yj ≤ uR ∀R ∈ R (7.11)

∑

j∈R

yj ≥ lR ∀R ∈ R (7.12)

Each R ∈ R represents a region, that is a subset of the candidate sites. Con-
straints (7.11) and (7.12) impose respectively an upper and a lower bound on the
number of facilities that can be located in each region. It is worth noting that in
general regions may overlap, while the methods proposed in Syam [99] and Murray
and Gerrard [79] are restricted to the case of non-overlapping regions.

Regional constraints can be also added to all the other location problems listed
above. The CPMP itself can be viewed as a RCSS-CFLP in which there are no
set-up costs (fj = 0 ∀j ∈ M) and just one region R with uR = lR = p.

7.2.5 Set partitioning formulation

All location problems described in the previous section admit an alternative formu-
lation set partitioning formulation, in which each column corresponds to a feasible

138 – Ch. 7 A B&P framework for capacitated network location

cluster, that is an assignment of customers to a facility, that satisfies the capacity
constraint. A binary variable zj

k is associated with each cluster. Let us indicate
by Zj the set of all feasible clusters whose correspondent facility is located in site
j ∈ M. Each cluster k is described by assignment coefficients xk

i equal to 1 if and
only if customer i ∈ N belongs to cluster k. The set partitioning formulation is
the following.

MP) min
∑

j∈M

∑

k∈Zj

(fj +
∑

i∈N

dijx
k
i)z

j
k (7.13)

s.t.
∑

j∈M

∑

k∈Zj

xk
i z

j
k = 1 ∀i ∈ N (7.14)

−
∑

k∈Zj

zj
k ≥ −1 ∀j ∈ M (7.15)

−
∑

j∈R

∑

k∈Zj

zj
k ≥ −uR ∀R ∈ R (7.16)

∑

j∈R

∑

k∈Zj

zj
k ≥ lR ∀R ∈ R (7.17)

zj
k ∈ {0, 1} ∀j ∈ M, ∀k ∈ Zj. (7.18)

Constraints (7.14) guarantee that each customer is assigned to a facility; con-
straints (7.15) impose that no more than one cluster is associated to the same
facility site. For each region R ∈ R, constraints (7.16) and (7.17) impose that the
number of clusters with facilities in R is between a lower bound lR and an upper
bound uR.

For concentrator-like models, each cluster always contains the corresponding
facility. In this case, constraints (7.15) are redundant, because they are implied by
constraints (7.14), and they can be removed. When this condition is not enforced,
partitioning constraints (7.14) can be replaced by covering constraints:

∑

j∈M

∑

k∈Zj

xk
i z

j
k ≥ 1 ∀i ∈ N (7.19)

because all distances are non-negative and therefore it does always exist an optimal
solution in which no customer is assigned more than once.

The set partitioning reformulation is the starting point for developing column
generation and branch-and-price algorithms. Many authors have followed this path
to develop effective algorithms to solve the SS-CFLP (Diaz and Fernandez [28])
the PMP (Senne et al. [97]) the CPMP (Baldacci et al. [6], Ceselli and Righini
[18]) or similar problems (Savelsbergh [95]).

A branch-and-price algorithm 139

Our purpose however is not to develop an algorithm tailored to any of such
problems, but rather to exploit the generality of the branch-and-price approach.
Branch-and-price is applicable to all models outlined above; this suggested us
to developed and evaluate a general-purpose branch-and-price solver for network
location problems.

7.3 A branch-and-price algorithm

In this section we present a general branch-and-price framework for single-source
capacitated location problems. This framework derives from the algorithm pro-
posed in [18] for the exact optimization of the CPMP.

We describe the main components of the algorithm. These include the column
generation subroutine, the branching strategy and the policy for the management
of columns. We also discuss the use of Lagrangean lower bounds and primal heuris-
tics. In this section we refer to set covering reformulation defined by the objective
function (7.13) and by set covering constraints (7.19), convexity constraints (7.15),
regional constraints (7.16) and (7.17) and integrality requirements (7.18). The car-
dinality constraint has not been taken into account in an explicit way, since it is a
special case of regional constraints.

7.3.1 Column generation

Each set Zj of feasible clusters served from a facility located in site j contains
an exponential number of elements. Since the linear relaxation of the master
problem MP (indicated hereafter by LMP) cannot be solved directly because of the
exponential number of its columns, column generation is applied (see Gilmore and
Gomory [43]): a restricted linear master problem (RLMP), defined by a relatively
small subset of columns, is considered and solved to optimality; then, a search is
performed for new columns of negative reduced cost and, if any such column is
found, it is inserted into the formulation and the RLMP is solved again. When
no columns of negative reduced cost exist, the optimal solution of the RLMP is
also optimal for the LMP and its value is a valid lower bound to be used in a
branch-and-bound framework.

The main advantage of the branch-and-price approach consists in the tightness
of the lower bound. The set partitioning formulation can be obtained from the
compact formulation by applying Dantzig-Wolfe decomposition [77]. As far as
the linear relaxations of the two formulations are concerned, the polyhedra Ωj

described by the capacity constraints in the compact formulation are convexified
in the set partitioning formulation. Since each Ωj is the polyhedron of the linear
relaxation of a binary knapsack problem (see [75] for a classical reference), which is

140 – Ch. 7 A B&P framework for capacitated network location

known not to have the integrality property, its extreme points can have fractional
coordinates; therefore the lower bound computed after the convexification of each
set Ωj can be tighter than that provided by the linear relaxation of the compact
formulation. Many experiments [15] [18] show that this is actually the case (see
also Section 7.5).

The implementation of the column generation algorithm requires the repeated
solution of a pricing problem. Let λ ∈ R

|N |
+ , µ ∈ R

|M|
+ , γu ∈ R

|R|
+ and γl ∈ R

|R|
+

be the vectors of non-negative dual variables corresponding to constraints (7.19),
(7.15), (7.16) and (7.17) respectively; the reduced cost of column k ∈ Z j is

rk(λ,µ,γu,γl) = fj +
∑

i∈N

dijx
k
i −

∑

i∈N

λix
k
i + µj −

∑

R∈R|j∈R

(γl
R − γu

R)

To find columns with negative reduced cost, one must solve a pricing problem for
each candidate facility j ∈ M:

min
∑

i∈N

(dij − λi)x
k
i + fj + µj −

∑

R∈R|j∈R

(γl
R − γl

R)

s.t.
∑

i∈N

wix
k
i ≤ Qj

xk
i ∈ {0, 1} ∀i ∈ N

and this requires the solution of the following binary knapsack problem:

KPj) max τj =
∑

i∈N

(λi − dij)x
k
i

s.t.
∑

i∈N

wix
k
i ≤ Qj

xk
i ∈ {0, 1} ∀i ∈ N

When a concentrator-like model is considered, each site selected to host a
facility must belong to its cluster and this can easily be handled by fixing xk

j = 1
in each KPj.

7.3.2 Branching scheme

The optimal solution of the RLMP can be fractional; hence the column generation
routine is embedded in a branch-and-bound algorithm. Different branching rules
can be applied ([14] [18]). The choice of a suitable branching strategy is definitely
critical because branching must not destroy the combinatorial structure of the
pricing problem. The branching rule we used works as follows: for each customer

A branch-and-price algorithm 141

i ∈ N we consider the set Ji of candidate facilities for which there is a fractional
assignment in the optimal solution of the RLMP:

Ji = {j :
∑

k∈Zj

zj
kx

k
i > 0}

Then we partition this set into two subsets J ′
i and J ′′

i : aiming at a balanced par-
tition, we sort the elements of Ji by non-increasing value of fractional assignment
and we insert them alternately in the first and in the second subset. We measure
the unbalance of the partition as

Ui = |
∑

j∈J ′
i

∑

k∈Zj

zj
kx

k
i −

∑

j∈J ′′
i

∑

k∈Zj

zj
kx

k
i |

that is the absolute difference between the value of fractional assignment to the
facilities in the first subset and the facilities in the second subset. The customer
i∗ selected for branching is the one which produces the most balanced partition:

i∗ ∈ argmini∈N{Ui}

Also the set of remaining candidate facilities, that is Ĵi∗ = M\Ji∗ , is partitioned
into two subsets Ĵ ′

i∗ and Ĵ ′′
i∗ . Then we generate two subproblems and in each of

them we forbid the assignment of the branching customer i∗ to the facilities of
J ′

i∗ ∪ Ĵ ′
i∗ in one branch and J ′′

i∗ ∪ Ĵ ′′
i∗ in the other. The effect of this branching

rule on pricing is simply that of fixing some of the variables to a value of zero.

7.3.3 Columns management

Initialization. The initial RLMP is populated with several columns to allow for
a “warm start” of column generation. For all problems outlined above, owing to
the capacity constraint, even finding a feasible solution can be difficult, since the
decision version of the problems is NP-complete. However the initial columns
must not necessarily form a complete feasible solution: they must only be in some
way “reasonable”, that is they must have a structure similar to those which are
likely to be part of feasible and good solutions. Therefore they are generated in a
heuristic way, as described in [18]: a given number p of candidate sites are selected
at random and the customers are clustered around them. If the problem has a
cardinality constraint, p is the given number of facilities to select; otherwise it
is set to |M|. In our implementation this initialization routine is run 10 times,
generating 10 p columns. Furthermore we add the following dummy columns: first
a dummy column having an entry equal to 1 corresponding to constraints (7.19)
and 0’s elsewhere; this represents a column covering all customers. This is done

142 – Ch. 7 A B&P framework for capacitated network location

to ensure the existence of a feasible starting basis for each iteration of column
generation. Second, we include a set of |M| dummy columns with an entry equal
to 1 corresponding to only one constraint (7.15) and 0’s elsewhere. This is done
to ensure the existence of a feasible starting basis in each node of the branching
tree when, due to branching or variable fixing operations, a site has been selected
to host a facility. This second set of dummy columns can be dropped when the
concentrator variants of the problems are used, since the first dummy column can
be selected to fulfill such branching or fixing decisions.

Pool management. At each column generation iteration we insert into the
RLMP all the columns with a negative reduced cost found by the pricing algorithm,
if any. When a limit of 3000 columns in the RLMP is reached, we remove from
the RLMP all the columns with a reduced cost larger than a given threshold; the
threshold is set to the value of the ratio between the current primal-dual gap and
the number of potential facilities p. Like in the initialization step, p is set to the
maximum number of facilities to select: it is part of the input on the cardinality
constrained problems, fixed to |M| otherwise. The removed columns are moved
into a pool. At each column generation iteration we scan the pool; if any column
is found to have a negative reduced cost, it is re-inserted into the RLMP. After
three subsequent unsuccessful checks, the column is deleted also from the pool.

7.3.4 Lagrangean bound

The lower bound obtained from the LMP can also be obtained through the La-
grangean relaxation of semi-assignment constraints (7.2) and regional constraints
(7.11) and (7.12) of the compact formulation:

LR) min ωLR =
∑

j∈M

fjyj +
∑

i∈N

dijxij+

−
∑

i∈N

λi(
∑

j∈M

xij − 1)+

−
∑

R∈R

γu
R(uR −

∑

j∈R

yj) −
∑

R∈R

γl
R(

∑

j∈R

yj − lR)

s.t.
∑

i∈N

wixij ≤ Qjyj ∀j ∈ M (7.20)

xij ∈ {0, 1} ∀i ∈ N ,∀j ∈ M

yj ∈ {0, 1} ∀j ∈ M

The Lagrangean multipliers in LR correspond to the dual variables in the LMP and
the Lagrangean subproblem can be decomposed into the same M binary knapsack
problems as the pricing subproblem in the column generation approach (for the

A branch-and-price algorithm 143

equivalence between Dantzig-Wolfe decomposition and Lagrangean relaxation the
reader is referred to mathematical programming textbooks like [77]). Therefore
column generation can be used as a method alternative to subgradient optimization
to update the Lagrangean multipliers.

At each iteration of column generation the current values of the dual variables
λ,γu and γl are used as Lagrangean multipliers. The optimal solution of the
formulation above, that is a valid lower bound, can be computed as follows. First,
we solve the allocation subproblem: for each candidate facility j, let a “penalty”
value πj be computed as

πj = −fj + τj −
∑

R∈R|j∈R

(γu
R − γl

R)

where τj is the value of optimal solution of KPj, that has been found solving
the pricing problem. Second, we solve the location subproblem, that consists in
finding the set MLR of location sites which is feasible with respect to the regional
constraints and contains the most profitable facilities (those with the lowest penalty
values).

When regions do not overlap, MLR can be computed as follows. Let MLR
R be

the set of the lR sites with maximum πj values in region R and let M̄LR
R be the set

of the uR sites with maximum πj values in region R. Then, the best selection of
facilities can be computed in two steps. First the region lower bound constraints
are satisfied by selecting the following set of facilities:

MLR :=
⋃

R∈R

MLR
R

Second, the unselected facility

j∗ ∈
⋃

R∈R

(M̄LR
R ∩MLR

R)

with highest πj∗ value is iteratively chosen, until the πj value of the best facility
left out is positive, or the upper bound constraints on the number of facilities in
each region become tight. It is also easy to handle global upper and lower bounds
on the number of facilities: the second step can be halted whenever one of the
following conditions holds: (a) the global lower bound on the number of open
facilities is satisfied and the πj value of the best facility left out is positive; (b) the
upper bound constraint on the number of facilities in each region becomes tight;
(c) the global upper bound becomes tight.

Instead, when regions may overlap it is not easy to find the best set MLR.
Therefore we further relax the problem and search for the most profitable set
of facilities, considering only a subset of regions S ⊆ R defined as follows. We

144 – Ch. 7 A B&P framework for capacitated network location

start with S = ∅. Then we iteratively choose the region R ∈ R \ S of minimum
cardinality with an empty intersection with each region in S, and we include R in
S until no more such regions can be found.

Once S has been found, we compute MLR by solving the location subproblem
as described above, replacing R with S. That is, we drop the regional constraints
in R \ S, obtaining the aforementioned relaxation, and we find the corresponding
best set of location sites.

Thus, MLR is the best set of location sites for either the Lagrangean problem
or a relaxation of it, and a feasible bound is obtained as

ωLR = −
∑

j∈MLR

πj +
∑

i∈N

λi +
∑

R∈R

(γl
RlR − γu

RuR).

In this way a sequence of valid lower bounds is computed during column gen-
eration and this allows to fix variables or even to prune the current node of the
search tree before column generation is over.

We further exploit the relationship between column generation and Lagrangean
relaxation outlined above to improve the dual variables via subgradient optimiza-
tion [47] after each column generation iteration. Starting with the current optimal
values of the dual variables λ, 100 subgradient iterations are executed. The step
parameter is initialized at 2 and it is halved after every 10 iterations in which the
current lower bound has not been improved with respect to the previous iteration.

Column generation is also speeded up by multiple pricing: instead of inserting
into the RLMP only the optimal column for each candidate facility, if any is found
with negative reduced cost, we add more (suboptimal) columns to enlarge the
search space for the linear programming algorithm. This is particularly useful at
the root node, when the column pool is still empty and the set of available columns
may be small.

To this purpose we exploit the subgradient optimization algorithm and we
insert into the RLMP the set of columns corresponding to each solution of the
LR for which the Lagrangean lower bound improves upon the best incumbent
Lagrangean lower bound.

7.3.5 Variable fixing

Given a solution of the Lagrangean relaxation LR, let ωLR be its value and let

jWI
R ∈ argminj∈MLR

T
R{πj}

be the site in region R with minimum πj value that hosts a facility and

jBO
R ∈ argmaxj /∈MLR

T
R{πj}

A branch-and-price algorithm 145

be the site in region R with maximum πj value that does not host a facility (WI
stands for “worst in”, BO for “best out”). Let also v∗ be a primal bound. The
idea is to compute how forbidding the location of a facility in a site j ∈ MLR

would affect the dual bound. If πjBO
R

> 0, or the lower bound constraint on region

R is active (once building a facility in site j is forbidden, it is worth or necessary
to open a facility in site jBO

R), and dωLR + πj − πjBO
R

e ≥ v∗, then yj can be fixed
to 1. In a similar way, if the lower bound constraint is not active, πjBO

R
≤ 0 and

dωLR + πje ≥ v∗, then yj can be fixed to 1. Analogously, if πjWI
R

< 0 or the upper

bound constraint on region R is active (once building a facility in j is imposed, it
is worth or necessary to close the facility in site jWI

R) and dωLR − πj + πjWI
R

e ≥ v∗,
then yj can be fixed to 0; in a similar way, if the upper bound constraint is not
active, πjWI

R
≥ 0 and dωLR − πje ≥ v∗, then yj can be fixed to 0. Once the πj

values have been computed, this variable fixing step takes O(
∑

R∈R

|R|) time and it

may reduce the problem size considerably.
In our experiments variable fixing was done at each iteration of the subgradient

optimization algorithm at the root node and only at the end of column generation
at the other nodes in the search tree.

7.3.6 Primal heuristics

In order to find good feasible solutions early in the search tree, we integrated two
primal heuristics in the main algorithm. Both of them are extensions of heuristics
presented in [18] and consist of two phases: the selection of facility locations and
the allocation of customers to the facilities.

The first one is a Lagrangean-based algorithm, based on the Lagrangean rlax-
ation presented in subsection 7.3.4: let MLR be the set of sites in which a facility
is activated in a Lagrangean-relaxed solution. We fix each location variable yj to
1 if j ∈ MLR, to 0 otherwise. This selection of facility sites can violate some
regional constraint. In this case the heuristic fails in identifying a feasible solu-
tion. Otherwise, we proceed to the allocation step as in [18]: when partitioning
constraints are not violated, we use the same assignments which appear in the
Lagrangean-relaxed solution, and the allocation of the other vertices is done as in
the heuristic algorithm of Martello and Toth [73] (called MTHG by the authors)
with desirability coefficients fij = −dij; the heuristic can fail during the second
step too, since it can be impossible to find a feasible allocation pattern. However,
this heuristic proved to be sufficiently fast and effective to be run at each eval-
uation of a Lagrangean bound, that is, several times for each column generation
iteration.

Another primal bound, based on the set partitioning formulation, is computed
with a rounding technique, starting from the current optimal solution of the LP

146 – Ch. 7 A B&P framework for capacitated network location

relaxation of the master problem, described by the (fractional) variables zj
k. In

order to measure the desirability of building a facility in each site we define two
sets of coefficients:

φij =
∑

k∈Zj

xk
i z

j
k ∀i ∈ N ∀j ∈ M

and

ψj =
∑

i∈N

φij ∀j ∈ M.

Then, the selection of facility locations is done in two steps. In the first step the
facility with highest ψj value is selected, among those which belong to some region
whose lower bound is not satisfied yet, and do not belong to any region whose
upper bound is tight; this operation is repeated until all region lower bounds are
satisfied, or no such facility can be found. In the second case the heuristic fails in
finding a feasible solution and stops. In the second step, the facility with highest
ψj value is selected, among those which do not belong to a region whose upper
bound is tight; this operation is repeated until no such facility can be found, or
the ψj value of the selected facility is less than 0.5. For the allocation phase, we
follow the three steps of the original MTHG algorithm: first, the customers are
assigned to the facilities in decreasing order of desirability coefficients φij as far as
the capacity constraint allows the assignments; if some vertex remains unassigned,
local search iterations are performed to produce a feasible solution; finally, if this
step succeeds, a local search tries to improve the solution. This heuristic is much
more time-consuming than the previous one. Therefore, it is used only in two
cases: (a) at the root node, at each column generation iteration, provided that the
value of the fractional LRMP solution is less than the double of the best known
lower bound; (b) at each node of the search tree, only once the column generation
process is over.

7.4 Branch-and-cut

The structure of a branch-and-cut algorithm is the following. First, the continuous
relaxation of a compact formulation is solved. When the optimal solution of this
relaxation is integral, it is also optimal. Otherwise, integrality is enforced in two
ways, that is cutting planes and branching. Cutting planes are inequalities which
are redundant for the original integer program, but are violated in the relaxed
solution. Adding these cuts and re-optimizing the problem may yield a tighter
lower bound. This cut-generation process can be iterated in order to obtain tighter
approximations to the optimal integer solution. Branching is usually performed

Branch-and-cut 147

by selecting a variable whose value is fractional and considering two (or more)
subproblems in which this variable is fixed to an integer value.

To benchmark our branch-and-price approach we chose as a competitor a
general-purpose MIP solver, which uses branch-and-cut, that is ILOG CPLEX
8.1. In this section we review the classes of inequalities that CPLEX automat-
ically generates and that we found to have a greater effect on the solution of
single-source capacitated location problems.

Clique cuts. Clique cuts are added whenever a set of binary variables is
identified such that at most one of the variables can be set to 1. These cuts are
derived from the examination of the relationship between the variables through
constraint propagation techniques. This is done by CPLEX in a preprocessing
step, before optimization starts.

Minimal cover cuts and generalized upper bound cover cuts. Each
capacity constraint (7.3) is analyzed in order to find a group of variables forming
a minimal cover. A minimal cover is a set of variables such that if all of them
were set to 1, the constraint would be violated, but if any of them is set to 0,
the constraint would not be violated. Therefore a valid inequality, called cover
inequality, imposes that the sum of these variables has to be strictly less than
their number. These cover inequalities can be strenghtened in many ways. In
particular CPLEX implements a search for generalized upper bound (GUB) cover
cuts. A GUB imposes that at most one element in a subset of variables can be
selected; this piece of information can be used to derive more restrictive cover cuts.
CPLEX dynamically generates violated minimal cover cuts and GUB cover cuts,
automatically finding how often to start this generation process and how many
cuts to generate. These inequalities proved to be the most effective cuts for our
class of integer programs.

Gomory fractional cuts. Gomory fractional cuts are an algebraic method
for generating valid inequalities through integer rounding. This is a general pur-
pose technique, that does not rely on any particular structure of the model.
CPLEX allows the user to decide a number of parameters, including how many
Gomory cuts must be generated and when. We kept the standard settings of
CPLEX in our experiments since we observed they were quite effective.

148 – Ch. 7 A B&P framework for capacitated network location

7.5 Computational analysis

In this section we present the experimental results of our tests, in which we
compared our general branch-and-price algorithm with the branch-and-cut-based
solver of ILOG CPLEX 8.1.

We have divided our experiments into three different parts. The purpose of
the experiments in the first part is to evaluate the effect of fixed costs, capacities
and cardinality constraints on the computing time required to achieve a provably
optimal solution. The second part concerns the effect of the introduction of re-
gional constraints and concentrator models. The third part includes experiments
on large-size instances for which neither approach could reach proven optimality
within a time-out of several hours; the purpose of these last experiments is to com-
pare branch-and-price with branch-and-cut in terms of approximation, measured
by the primal-dual gap.

The branch-and-price algorithm has been implemented in C++. ILOG CPLEX
8.1 libraries have been used to solve the LP relaxations. The program was compiled
with GNU C/C++ compiler version 3.2.2 with full optimizations. All internal
parameters of CPLEX have been kept to default values. All tests have been run
on a Pentium IV 1.6GHz machine, running a Linux RedHat 9 operating system.
Resource limitations were imposed to both algorithms: computation was halted
after one hour of CPU time and the available RAM memory was limited to 512
MB.

7.5.1 Cardinality constraints and fixed costs

This first set of experiments is aimed at studying the effect of cardinality con-
straints and fixed costs.

To this purpose we considered two SS-CFLP data-sets, both taken from the
literature: the first one (indicated as HOLM) consists of 71 instances and it is
described in [49]; the second (indicated as DIAZ) consists of 57 instances and it
is described in [28]. The instances in these data-sets have up to 200 users and 30
candidate sites. DIAZ instances have non-uniform fixed costs and capacities, while
HOLM instances consider candidate facilities with both uniform and non-uniform
fixed costs and capacities

We designed our experiments to investigate two main questions: (Q1) “What
happens when a cardinality constraint is introduced?” (Q2) “How does the com-
puting time change when fixed costs are made more uniform?”

To answer question (Q1) we added a constraint on the maximum number of
facilities, p. The value of p has been defined so that the average demand satisfied

Computational analysis 149

by each of p facilities would be equal to 0.8:

p = b

∑
i∈N wi

0.8
∑

j∈MQj/|M|
c.

The fixed costs are still considered.
To answer question (Q2) we also considered three different scenari: scenario

(a) corresponds to the original HOLM and DIAZ instances with the additional
cardinality constraint; in scenario (b) all fixed costs have been halved; in scenario
(c) all fixed costs have been set to 0; for each DIAZ instance, in a forth scenario
(d) the fixed cost for each site has been set equal to the average fixed cost in its
instance.

In Tables 7.2 and 7.3 we report the results obtained for HOLM and DIAZ
data-sets respectively.

Table 7.2 consists of four vertical blocks. The first one indicates the character-
istics of each instance (in turn, problem id, number of users, number of candidate
location sites, range in which the setup costs are generated, range in which the
capacity constraints are generated); a single value substitutes the range when the
data is constant. Each of the three subsequent blocks refers to one of the scenari
(a) to (c) described above. In each of these blocks we report the value of the so-
lutions found by the branch-and-price (BP) and branch-and-cut (BC) algorithms,
and the CPU time spent in proving its optimality. When the test exceeded the
time resource limitation, the corresponding ‘time’ column is marked with a dash,
while in case of memory overflow we mark the ‘time’ column with a star symbol.
When one (or both) method exceeded the resource limitations, and the best found
solutions are different, we mark the one with lowest value in bold.

The last three rows of the table indicate the average computing times (neglect-
ing the instances in which optimality was not proved), the number of instances
solved to proven optimality and the average gap between the primal and the dual
bounds at the end of computation (for the instances whose solutions were not
proved optimal).

Table 7.3 has an analogous structure: in the first block we report the size of
the instances. In the other blocks we report the results for scenari (a) to (d).

Question (Q1). In the rightmost block of each table we mark with a capital
‘T’ the instances for which the cardinality constraint is tight in an optimal solution.
The leading row of each column is marked as the corresponding scenario; the
column corresponding to scenario (c) has been dropped, since without fixed costs,
the cardinality constraint is always tight. Considering scenario (a), the cardinality
constraint is tight only for 6 of the 57 DIAZ instances, but has impact on many
of the HOLM instances.

Question (Q2). From the analysis of the average results it is easy to see
that non-uniform fixed costs make the instances much harder to solve for both

150 – Ch. 7 A B&P framework for capacitated network location

branch-and-price and branch-and-cut. Computing times in scenario (c), without
fixed costs, are two orders of magnitude lower than those in the other scenari and
scenario (c) is the only one in which all DIAZ instances were solved within the
time limit. In scenario (c) the branch-and-price algorithm could solve 63 HOLM
instances out of 71 and CPLEX solved all of them; the increase in the average
computing time of the branch-and-price algorithm with respect to scenari (a) and
(b) is a consequence of the larger number of instances solved, since the average
time is computed only on the solved instances.

Branch-and-price is more effective when fixed costs are absent or uniform: for
instance in data-set DIAZ, scenario (c), it takes less average time than CPLEX
to solve the same number of instances and in scenario (d) it takes about 75%
the average time required by CPLEX and solves approximately the same number
of instances. In data-set HOLM the number of instances closed by branch-and-
price increases when costs become more uniform or vanish, while branch-and-cut
is rather insensitive to this variation. When fixed costs are non-uniform branch-
and-cut performed better than branch-and-price. This outcome was expected since
our branch-and-price algorithm had been originally devised for the CPMP without
fixed costs. When fixed costs are significant, location decisions (that is, where to
open the facilities) are likely to become more critical than allocation decisions (that
is, to which facility each user must be assigned). Hence in these cases a two-levels
branching policy like that proposed by Pirkul [86] and Diaz and Fernandez[28] can
be more appropriate for branch-and-price algorithms.

7.5.2 Regional constraints and concentrators

The purpose of the second set of experiments is to evaluate the effect of introducing
cardinality constraints and fixed costs in SS-CFLP and CPMP models, from the
viewpoint of the computational resources required to reach provable optimality
and from the viewpoint of the optimal value. This completes the investigation
addressed in Q1 and Q2: in the former case, we introduced cardinality constrains
in instances involving fixed costs, while in this case we provide fixed costs in
instances with cardinality restrictions. Hence the questions we investigated are
the following: (Q3) “What is the effect of introducing cardinality constraints in
SS-CFLP?” (Q4) “What is the effect of introducing fixed costs in the CPMP?”

Then we also tried to evaluate the effect of regional constraints and of con-
straints imposing that a user hosting a facility must be allocated to it (i.e. the
“concentrator” case). We aim at giving an answer to the following questions: (Q5)
“What is the effect of introducing regional constraints of different types?” (Q6)
“What is the effect of the constraint yi = xii in these models?”

For this second set of experiments we used the data-set based on 20 CPMP
instances taken from the OR Library web site and already used in several papers

Computational analysis 151

([6] [84]). This data-set is more significant for these experiments for the following
reasons: (1) they are Euclidean, in that distances between users and facilities are
computed according to the Euclidean metric in two dimensions; therefore their
distance matrices are more realistic than random matrices; (2) in the literature
regional constraints have been so far considered in addition to models as CPMP
[79] and SS-CFLP with cardinality constraints [99] and the instances considered in
these papers are similar to ours; (3) the set of sites which can host facilities coin-
cides with the set of the users; this restriction contributes to make these instances
more realistic. Moreover it allows to evaluate the effect of the constraint yi = xii.

The original instances have a cardinality constraint with p = N/10 and no
fixed costs. We considered three variants: CPMP with cardinality constraint
and no fixed costs, SS-CFLP with fixed costs and no cardinality constraint, and
CARD+FIX with cardinality constraint and fixed costs. Fixed costs have been
randomly generated from a uniform distribution in the range [Qj/2, . . . , 3Qj/2].

We generated seven types of regional constraints, indicated by capital letters
from A to G. Regions in types A to E correspond to partitions of the instance
graph, while regions in type F and G instances may overlap. In Table 7.1 we
describe in details how these instances were generated. We report the regions type
(first column), the number of regions (second column), the ranges in which the
lower and the upper bounds of each region are chosen (third and forth column)
and the average overlapping of the regions (fifth column).

Let r be the number of regions in which a graph with N vertices has to be
partitioned. Consider as “covered” a vertex belonging to a region: so each of the
vertices in the original CPMP instances is initially “uncovered”. In each instance
regions are created as follows: first, the vertex with minimum average distance
between the other vertices is selected. This is the “seed” of the new region. Second,
the uncovered vertex with minimum distance between one of the vertices in the
new region is iteratively included in the region, until the number of vertices in the
region is N/r. This process is repeated, partitioning in r − 1 regions the graph of
the uncovered nodes.

Regions overlapping is allowed by iteratively selecting the pair of vertices with
minimum distance, which belong to different regions, and imposing that each
of these vertices belongs to both regions, until a predefined overlapping ratio is
reached.

The outcome of the experiments is reported in Tables 7.4 and 7.5. Each Table
is divided in seven horizontal blocks and four vertical blocks. Each horizontal block
corresponds to a region type (whose ID is reported in the first cell of each block).
The first vertical block includes the instance parameters (region type and instance
ID). The second, third and forth vertical blocks refer to the CPMP, SS-CFLP
and CARD+FIX variants of the problem respectively. In each of these blocks

152 – Ch. 7 A B&P framework for capacitated network location

Constraint Type Number of regions Lower bound Upper bound Overlap percentage

A 1 0 p 0%
B 2 2 3 0%
C d1

2pe [0, 1] [1 . . . 3] 0%
D d2

3pe [0, 1] [1 . . . 2] 0%
E p 1 1 0%
F d3

2pe [0, 1] [1 . . . 3] 50%
G 9

5p [0, 1] [1 . . . 3] 80%

Table 7.1: Generation of regional constraints

we indicate, for each instance, the value of the optimal solution, the maximum
distance between a facility and one of its assigned users and the maximum load
of a facility (computed as the ratio between the sum of the demands of users
assigned to the facility and the capacity of the facility). For each of these values,
the percentage increase (or decrease) with respect to the value in the optimal
solution of the problem without regional constraints is indicated. Finally, the time
(in seconds) required to prove optimality by both branch-and-price and branch-
and-cut is reported. In the last row of each horizontal block we indicate the average
results for each region type.

Question (Q3). Comparing the results reported in block SS-CFLP with those
in block CARD+FIX in Tables 7.4 and 7.5 it can be seen that the cardinality
constraint has little effect on the computing time for both methods. Against the
intuition, the introduction of this constraint does not contribute to reduce the
search space and thus the difficulty of the problem: in some cases the opposite
effect is observed. We remark that these experiments have been made only with
the given value of the ratio p/N = 1/10. Also the effect on the value of the optimal
solution was almost negligible: for 50 users instances we observed a 2.25% increase
in the minimum cost, while for 100 users instances the observed increase was about
0.65%. Furthermore, this increase vanishes as tightest regional constraints are
introduced.

Question (Q4). On the opposite, comparing the results in block CPMP with
those in block CARD+FIX in Tables 7.4 and 7.5 it is clear that removing the
fixed costs really changes the structure of the problem. For the branch-and-cut,
the CPMP is more difficult than the CARD+FIX variant: computing the optimal
solution of the CPMP instances requires about a double CPU time with respect to
the variant with fixed costs. Branch-and-price does not have a regular behavior:
on some instances (e.g. instance 8 with N = 50 and instance 8 with N = 100) the
optimization of the CPMP version is more difficult than that of the CARD+FIX
version, while on other instances the opposite trend is observed.

If CPMP is interpreted as a CARD+FIX problem in which obtaining the best

Computational analysis 153

average service for the users (minimum allocation costs) is much more relevant
than searching for the best trade-off between fixed costs and allocation costs, then
it makes sense to compare the optimal CPMP solution value with the contribution
of the allocation costs to the optimal CARD+FIX solution value. When the CPMP
model is used, a reduction of about 6% and 9.5% in the allocation costs is obtained
for the N = 50 and N = 100 instances respectively, while the corresponding
increase on the overall solution value is about 9.5% and 15.5% respectively.

Question (Q5). From a comparison of the values reported on the last row
of each block in Tables 7.4 and 7.5 (the “avg” row), it is possible to evaluate the
effect of the different regional constraints on the computing time and the optimal
value. From the viewpoint of computational resources no relevant differences are
observed: the computing time required by branch-and-price and branch-and-cut
remains of the same order of magnitude.

In CPMP instances, with no fixed costs, when the number of regions increases
(from A instances to E instances) the computing time decreases and this holds
for both approaches. On the contrary in SS-CFLP instances, without cardinality
constraints, the computing time increases when the number of regions increases.
The computing time with overlapping regional constraints (types F and G) are
not very different from those without regional constraints.

The value of the optimal solution is strongly affected by regional constraints:
for instance the average optimal value of all the instances in class E is about 25%
worse than that for class A. When regions are large and overlap (types F and G)
the effect on the optimal value is small.

Instances with fixed costs, that is those in classes SS-CFLP and CARD+FIX,
are more affected by regional constraints. This was expected because constraints
on location variables have impact both on assignment costs and on location costs:
in the former case, because it can be necessary to locate facilities in sites farther
away from users; in the second case, because it can be necessary to use sites with
higher fixed costs.

Since regional constraints are usually considered as an option to enforce some
kind of “equity” in the geographical distribution of the facilities, we analyzed how
the worst-case service varies when the regional constraints are introduced. In
particular we observed the maximum user-facility distance and the maximum load
assigned to a facility. Neither of these parameters significantly decreases when the
number of regions increases. This puts some doubt on the actual effectiveness of
regional constraints to achieve fairness among the users and equitable distribution
of the workload among the facilities. It seems to us that equity can be better
pursued by suitable models in which min-max objective functions are explicitly
considered and optimized.

Question (Q6). All tests described in the previous paragraph have been

154 – Ch. 7 A B&P framework for capacitated network location

repeated for the concentrator variant, in which user i must be assigned to facility
j whenever the facility is located in the same site of the user. Results are reported
in Tables 7.6 and 7.7.

We can observe that the average computing time of branch-and-cut is improved;
this was also expected since branch-and-cut takes advantage of a reduced number
of variables. On the contrary the computing time of branch-and-price is worse,
even if the N constraints (7.15) are removed from formulation (7.13) – (7.18).

The value of the optimal solution is not affected: it did not change in any of
our tests.

7.5.3 Lower bounds and gaps on large-size instances

In former computational evaluations [18], the lower bounds achieved by branch-
and-cut and branch-and-price at the root node have been measured, when solving
large scale instances (900 customers). We observed that the lower bound provided
by branch-and-price is consistently tighter: branch-and-cut could never reduce the
duality gap with respect to the best known feasible solution below 1.2%; on the
contrary branch-and-price achieved duality gaps ranging from the 0.5 to the 0.8 as
much. CPLEX experienced memory overflow problems and could neither solve the
linear relaxation at the root node nor find any feasible solution. On the contrary
branch-and-price yielded feasible solutions with an approximation of about 4% in
average.

On the same large-scale instances, we observed that when the concentrator re-
striction is introduced, the computing time required by branch-and-price is reduced
to approximately one half.

7.6 Conclusions

From the average results reported in the last rows of the tables above the following
observations can be done. Both branch-and-cut and branch-and-price could solve
all instances with 50 users: branch-and-cut was in average faster; branch-and-price
worked better when both cardinality constraints and fixed costs were present (class
CARD+FIX). For instances with 100 users branch-and-cut was clearly superior to
branch-and-price, mainly in terms of instances solved to proven optimality within
the time limit. Looking at the detailed results reported in the tables, however, one
can see that there are several instances in which branch-and-price wins. Therefore
the superiority of branch-and-cut holds in average, on a sufficiently large number
of instances, but there is no guarantee that it will be the best approach on any
given single instance.

Conclusions 155

A very important remark concerns the trade-off between the width of appli-
cability and the effectiveness of the algorithms examined here. As stated in the
introduction, our goal was not to compare two specific algorithms but rather two
approaches, designed to be widely applicable to all location problems considered
here. This strive for generality is obviously paid in terms of effectiveness. Therefore
for each single location problem considered here it may be possible to obtain better
results than those presented above, by incorporating specialized cutting, branch-
ing and heuristic procedures. Examples of specialized cutting planes devised for
particular network location problems are those of [3] and [2]; specialized branch-
ing procedures are illustrated for instance in [28] and [86]; specialized heuristic
procedures can be found in [49] and [29]. The performances of both branch-and-
cut and branch-and-price general solvers can be strongly affected by such tailored
additions. Branch-and-price exploits a tight lower bound, provided by the set
partitioning reformulation of the problems. This gives advantage on large scale
instances compared with branch-and-cut algorithms.

Last but not least, the branch-and-cut code we have used as a benchmark for
our branch-and-price framework is a commercial Mixed-Integer Linear Program-
ming solver, not available for free, while our code is freely available upon request
for scientific purposes. It needs a linear programming subroutine to solve the linear
relaxation of the restricted master problem: the results presented above have been
obtained with the ILOG CPLEX simplex algorithm but any linear programming
solver can be used instead.

(a) Setup * 1.0, load factor 0.8 (b) Setup * 0.5, load factor 0.8 (c) Setup * 0.0, load factor 0.8 Tight cons.
Id N M F Cap BPv. BPt. BCv. BCt. BPv. BPt. BCv. BCt. BPv. BPt. BCv. BCt. (a) (b)
1 50 10 [300..700] [100..400] 8848 0.38 8848 0.17 7331 0.44 7331 0.17 5814 0.27 5814 0.16 T T
2 300 7914 0.38 7914 0.15 6864 0.27 6864 0.16 5814 0.26 5814 0.16 T T
3 500 9314 0.30 9314 0.15 7564 0.34 7564 0.16 5814 0.26 5814 0.15 T T
4 700 10714 1.53 10714 0.74 8264 0.26 8264 0.15 5814 0.26 5814 0.14 T T
5 [300..700] 200 8838 0.41 8838 0.40 7026 0.38 7026 0.12 5077 0.41 5077 0.12 T
6 300 7777 0.20 7777 0.06 6427 0.46 6427 0.11 5077 0.19 5077 0.05 T T
7 500 9488 1.32 9488 0.28 7327 0.54 7327 0.12 5077 0.40 5077 0.12 T
8 700 11088 1.10 11088 0.45 8227 1.05 8227 0.19 5077 0.40 5077 0.12 T
9 [300..700] 300 8462 0.30 8462 0.14 7197 0.36 7197 0.14 5932 0.32 5932 0.14 T T

10 300 7732 0.38 7732 0.14 6832 0.35 6832 0.14 5932 0.31 5932 0.14 T T
11 500 8932 0.52 8932 0.14 7432 0.42 7432 0.14 5932 0.30 5932 0.14 T T
12 700 10132 1.03 10132 0.15 8032 0.34 8032 0.14 5932 0.32 5932 0.14 T T
13 50 20 [300..700] [100..400] 8252 0.40 8252 0.32 6382 0.50 6382 0.26 4437 0.34 4437 0.23 T T
14 300 7137 0.48 7137 0.25 5787 0.67 5787 0.22 4437 0.34 4437 0.23 T T
15 500 8808 0.56 8808 0.28 6687 0.37 6687 0.24 4437 0.33 4437 0.24 T
16 700 10408 1.25 10408 0.57 7587 0.41 7587 0.26 4437 0.32 4437 0.23 T
17 [300..700] 200 8227 0.93 8227 0.44 6370 0.32 6370 0.23 4425 0.53 4425 0.23 T
18 300 7125 0.37 7125 0.23 5775 0.48 5775 0.23 4425 0.54 4425 0.24 T T
19 500 8886 2.09 8886 1.43 6675 0.27 6675 0.24 4425 0.55 4425 0.22 T
20 700 10486 2.17 10486 1.44 7575 0.32 7575 0.27 4425 0.54 4425 0.24 T
21 [300..700] 300 8171 0.76 8171 0.18 6785 0.84 6785 0.22 5373 3.14 5373 2.13 T T
22 300 7473 4.50 7473 2.54 6423 2.94 6423 1.95 5373 3.14 5373 2.17 T T
23 500 8873 3.41 8873 2.23 7123 2.30 7123 0.61 5373 3.09 5373 2.14 T T
24 700 10273 2.99 10273 1.66 7823 2.18 7823 0.46 5373 3.10 5373 2.04 T T
25 150 30 [300..700] [100..400] 11630 - 11630 15.62 9978 682.60 9978 1.15 8086 31.01 8086 0.98 T
26 300 10771 - 10771 15.27 9436 54.79 9436 0.98 8086 30.72 8086 0.97 T
27 500 12322 - 12322 43.97 10336 1594.03 10336 2.66 8086 31.01 8086 0.97 T
28 700 13722 - 13722 43.55 11171 - 11171 9.23 8086 30.69 8086 0.96
29 [300..700] 200 12371 - 12371 226.02 10257 - 10257 130.12 7967 2690.72 7967 4.65
30 300 11394 - 11331 670.97 9744 - 9742 46.10 7967 2697.21 7967 4.66
31 500 13483 - 13331 546.72 10844 - 10831 273.28 7967 2682.70 7967 4.63
32 700 15450 - 15331 1040.26 11944 - 11831 763.61 7967 2687.10 7967 4.64
33 [300..700] 300 11629 512.66 11629 3.22 9932 498.81 9932 1.51 8068 31.36 8068 1.06
34 300 10632 40.10 10632 1.33 9418 102.52 9418 1.27 8068 31.13 8068 1.06 T
35 500 12232 29.18 12232 1.34 10232 25.66 10232 1.32 8068 31.29 8068 1.06
36 700 13832 31.97 13832 1.35 11032 39.33 11032 1.33 8068 31.10 8068 1.06
37 [300..700] 600 11258 34.80 11258 1.03 10049 39.92 10049 0.99 8824 74.40 8824 1.02 T T
38 300 10624 44.66 10624 0.95 9724 36.20 9724 0.98 8824 74.88 8824 0.99 T T
39 500 11824 51.50 11824 1.02 10324 44.59 10324 0.95 8824 75.36 8824 0.99 T T
40 700 13024 28.89 13024 0.97 10924 38.64 10924 0.99 8824 74.80 8824 1.01 T T

Computational results on HOLM instances (cont’d on the next page)

(a) Setup * 1.0, load factor 0.8 (b) Setup * 0.5, load factor 0.8 (c) Setup * 0.0, load factor 0.8 Tight cons.
Id N M F Cap BPv. BPt. BCv. BCt. BPv. BPt. BCv. BCt. BPv. BPt. BCv. BCt. (a) (b)
41 90 10 [300..700] [100..400] 6700 76.08 6700 18.14 5728 29.09 5728 8.90 4730 79.82 4730 8.30 T T
42 80 20 [300..700] [100..400] 5663 100.83 5663 6.90 4666 23.80 4666 6.33 3669 21.64 3669 2.63 T T
43 70 30 [300..700] [100..400] 5214 1.01 5214 0.55 4292 1.32 4292 0.55 3368 1.62 3368 0.54 T T
44 90 10 [300..700] [100..400] 7270 8.06 7270 2.08 5829 21.17 5829 0.57 4388 3.33 4388 0.30 T T
45 80 20 [300..700] [100..400] 6251 4.34 6251 0.49 5018 3.63 5018 0.50 3785 3.32 3785 0.53 T T
46 70 30 [300..700] [100..400] 5965 2.48 5965 0.78 4949 1.31 4949 0.79 3919 2.78 3919 0.80 T T
47 90 10 [300..700] [100..400] 6719 1598.23 6719 3.16 5354 65.78 5354 4.43 3975 41.87 3975 0.85 T T
48 80 20 [300..700] [100..400] 6179 29.11 6179 9.20 5017 19.06 5017 9.54 3857 20.75 3857 11.75 T T
49 70 30 [300..700] [100..400] 5609 61.82 5609 13.68 4529 5.68 4529 0.96 3417 3.41 3417 0.58 T T
50 100 10 [300..700] [100..400] 8808 - 8808 6.44 7654 - 7654 6.63 6500 - 6500 11.29 T T
51 20 [300..700] [100..400] 7422 - 7414 40.35 6219 - 6219 9.71 4971 2475.37 4971 14.56 T T
52 10 [300..700] [100..400] 9178 16.32 9178 1.47 7785 39.61 7785 1.51 6390 36.24 6390 1.00 T T
53 20 [300..700] [100..400] 8531 6.63 8531 0.58 7151 12.04 7151 0.59 5770 9.99 5770 0.57 T T
54 10 [300..700] [100..400] 8777 4.39 8777 0.95 7416 62.76 7416 1.19 5861 13.41 5861 1.10
55 20 [300..700] [100..400] 7654 210.13 7654 2.62 6324 73.49 6324 2.49 4894 13.29 4894 2.23 T
56 200 30 [300..700] [100..400] 21120 - 21103 119.79 16620 - 16618 130.69 12178 - 12118 104.75 T T
57 300 26411 - 26039 939.41 19318 - 19318 127.78 12178 - 12118 104.94 T
58 500 37871 - 37239 796.17 25720 - 25239 611.74 12178 - 12118 104.88
59 700 27311 - 27282 341.88 20519 1434.28 20519 27.72 12178 - 12118 104.66
60 [300..700] 200 20854 92.33 20854 1.88 17854 51.74 17854 1.89 14854 107.52 14854 1.89 T T
61 300 24454 42.29 24454 2.20 19654 45.97 19654 1.95 14854 107.05 14854 1.90 T T
62 500 32689 - 32643 193.20 23854 37.10 23854 2.08 14854 107.71 14854 1.91 T
63 700 25105 525.87 25105 6.84 20701 56.66 20701 2.50 14854 107.46 14854 1.91 T T
64 [300..700] 300 22476 - 22476 68.19 20226 2891.49 20226 52.19 17976 - 17976 64.74 T T
65 300 25176 2326.14 25176 59.09 21576 2266.30 21576 59.30 17976 - 17976 64.63 T T
66 500 31657 - 31415 330.87 24726 - 24726 73.22 17976 - 17976 63.69 T T
67 700 24848 422.25 24848 14.67 20248 32.85 20248 0.92 14619 37.51 14619 0.87 T
68 [300..700] 600 20932 17.19 20932 1.13 17932 55.73 17932 1.10 14932 18.91 14932 1.10 T T
69 300 24532 15.47 24532 1.11 19732 20.84 19732 1.17 14932 18.86 14932 1.09 T T
70 500 32392 - 32321 135.92 23932 39.66 23932 2.27 14932 39.90 14932 2.28 T
71 700 25880 - 25893 - 21019 - 20973 270.53 14932 39.98 14932 2.32 T T

Avg computing time 122.36 82.11 177.38 37.54 232.33 10.24
Solved instances 52.00 70.00 59.00 71.00 63.00 71.00
Avg. (PB - DB) / DB gap 0.87% 0.80% 0.72%

Table 7.2: Computational results on HOLM instances

(a) Setup * 1.0, load factor = 0.8 (b) Setup * 0.5, load factor = 0.8 (c) Setup * 0.0, load factor = 0.8 (d) AVGFIX Tight cons.
Id N M BPv. BPt. BCv. BCt. BPv. BPt. BCv. BCt. BPv. BPt. BCv. BCt. BPv. BPt. BCv. BCt. (a) (b)
1 15 10 2014 2.51 2014 1.42 1147 0.30 1147 0.33 207 0.07 207 0.08 2081 0.08 2081 0.13 T
2 4251 0.63 4251 1.70 2319 2.11 2319 1.46 201 0.07 201 0.04 3668 0.21 3668 1.30
3 6051 - 6051 2.40 3159 1.47 3159 0.86 185 0.05 185 0.03 5427 0.12 5427 0.12 T
4 7168 - 7168 10.91 3785 506.69 3785 1.05 195 0.06 195 0.03 6328 0.18 6328 0.14
5 4551 - 4551 9.24 2466 3.97 2466 1.23 269 0.06 269 0.04 4273 0.14 4273 0.16
6 2269 1.81 2269 1.67 1272 0.11 1272 0.24 213 0.03 213 0.03 2189 0.11 2189 0.17
7 30 15 4366 1201.23 4366 8.96 2422 45.49 2422 10.25 269 0.06 269 0.04 4069 0.44 4069 2.82
8 1244 0.06 1244 0.03 1231 0.05 1231 0.04 381 0.13 381 0.11 2216 0.05 2216 0.04
9 2480 1.33 2480 19.22 1447 1.93 1447 7.99 275 0.09 275 0.08 2664 0.57 2664 14.58

10 23112 2102.66 23112 4.40 11745 1.37 11745 20.82 172 0.08 172 0.05 21733 0.37 21733 19.75
11 3447 7.53 3447 59.36 1937 0.33 1937 5.34 255 0.10 255 0.06 3245 0.58 3245 139.32
12 3711 440.25 3711 39.34 2103 0.73 2103 4.60 297 0.08 297 0.08 3394 0.33 3394 0.62
13 3760 335.45 3760 178.79 2090 0.97 2090 5.78 288 0.23 288 0.19 3380 1.52 3380 11.07
14 6767 - 6579 4.43 3654 2220.36* 3572 122.26 323 0.08 323 0.06 6571 0.24 6571 0.24 T T
15 7816 47.29 7816 21.93 4095 1.18 4095 28.08 175 0.11 175 0.08 7868 0.44 7868 9.30
16 11543 - 11543 16.71 5958 5.96 5958 28.27 175 0.10 175 0.07 11648 0.39 11648 7.21
17 9932 2025.03* 9884 18.93 5239 - 5239 11.56 243 0.07 243 0.08 9054 0.65 9054 1.90
18 40 20 15628 - 15607 68.21 8037 150.39 8037 35.43 238 0.11 238 0.11 14427 1.28 14427 555.28
19 18769 1506.45* 18683 2535.92 9596 - 9557 4.14 221 0.13 221 0.18 17301 1.49 17301 13.73
20 26680 - 26584 - 13558 - 13504 1053.73 185 0.19 185 0.11 24862 2.65 24862 604.14
21 7302 - 7301 - 3872 10.39 3872 400.90 265 0.19 265 0.15 6937 0.43 6937 26.11
22 3315 - 3314 119.82 1926 4.78 1926 22.85 328 0.30 328 0.29 3166 64.81 3166 5.16 T T
23 6036 118.78 6036 28.22 3338 0.84 3338 10.61 320 0.22 320 0.25 6160 1.11 6160 2.26 T T
24 6357 2683.41* 6346 14.73 3474 - 3474 14.57 407 0.71 407 1.96 6550 100.17 6550 7.46 T T
25 8947 - 8947 14.87 4745 - 4745 8.08 359 3.19 359 1.91 10024 29.35 10024 5.44
26 50 20 4448 9.92 4448 365.19 2502 14.21 2502 384.02 268 0.19 268 0.22 4347 2.04 4347 12.97
27 10974 - 10963 - 5981 - 5979 - 455 4.28 455 3.42 11734 81.82 11734 5.38 T T
28 11590 - 11500 63.49 6080 - 6025 149.40 351 0.64 351 3.04 11327 478.67 11327 26.09 T T
29 9941 - 9832 104.28 5239 - 5239 234.44 402 0.25 402 0.18 9662 224.95 9662 17.01
30 10935 - 11074 - 5735 2424.67* 5721 - 249 0.35 249 0.14 9497 0.54 9497 8.33
31 4525 2271.85* 4466 2864.39 2466 70.30 2466 17.81 285 0.21 285 0.12 3789 26.47 3789 20.39
32 10266 1385.73* 9881 37.29 5295 - 5295 354.32 387 1.57 387 5.52 8965 19.66 8965 2.71 T
33 39463 - 41362 - 20026 1468.96 20943 - 311 0.89 311 0.33 38010 1.55 38010 740.29

Computational results on DIAZ instances (cont’d on the next page)

(a) Setup * 1.0, load factor = 0.8 (b) Setup * 0.5, load factor = 0.8 (c) Setup * 0.0, load factor = 0.8 (d) AVGFIX Tight cons.
Id N M BPv. BPt. BCv. BCt. BPv. BPt. BCv. BCt. BPv. BPt. BCv. BCt. BPv. BPt. BCv. BCt. (a) (b)
34 60 30 4819 - 4736 - 2796 - 2769 527.66 315 0.30 315 0.37 8330 2900.03 8330 187.95
35 5456 - 5456 26.82 2999 61.11 2999 21.20 256 1.06 256 1.33 8184 26.98 8184 459.94
36 17243 - 16781 2008.69 8939 - 8749 2340.74 244 0.25 244 0.22 27416 7.44 27416 48.28
37 14783 - 14803 - 7771 2742.9* 7692 - 262 0.99 262 6.04 23147 4.51 23147 34.45
38 47280 - 47249 112.95 23863 - 23875 - 199 0.30 199 0.44 54037 2.86 54037 142.28
39 41197 - 41007 856.11 20851 - 20766 3111.67 233 0.26 233 0.25 55083 8.67 55083 535.18
40 62004 - 64108 - 31267 - 31056 - 183 0.71 183 0.98 73969 2.44 73969 465.55
41 20202 462.65* 17246 17.73 10551 815.93* 9196 45.63 506 2.00 506 13.43 60052 - 60052 46.30
42 75 30 7920 - 7887 159.80 4366 - 4344 - 318 0.42 318 0.38 11070 205.36 11070 903.45
43 5114 3.00 5114 499.35 3020 - 3020 38.69 378 9.49 378 13.43 10274 8.52 10274 45.89
44 36688 - 37636 - 18389 - 18959 - 211 0.55 211 0.29 38065 5.25 38065 211.58
45 17854 - 17676 18.23 9308 - 9233 135.81 335 1.01 335 1.64 29359 63.67 29359 190.55
46 51409 - 50250 - 26078 - 24718 2676.39 348 0.42 348 0.42 71251 70.66 71251 131.01
47 68426 - 68452 - 34603 - 34995 - 291 0.43 291 0.31 67682 3.79 67682 416.88
48 63385 - 58964 314.92 32181 - 30036 130.99 423 1.37 423 8.37 85726 1053.53 85729 1408.68
49 85668 - 81301 - 42803 - 41184 - 285 0.45 285 0.57 92208 95.09 92208 1325.22
50 90 30 6047 - 5937 248.99 3570 - 3522 643.45 550 14.38 550 15.47 12720 - 12712 66.75
51 9123 3277.43 9123 - 5053 - 5055 - 369 0.70 369 0.68 12946 466.02 12946 301.92
52 38575 - 35324 - 19572 - 17681 - 357 1.78 357 1.30 47157 30.77 47157 245.88
53 30140 - 30038 339.95 15558 - 15379 808.02 322 0.88 322 0.41 37580 9.57 37580 1639.23
54 51461 - 43853 39.32 26203 - 22485 59.48 462 15.70 462 12.22 84562 37.89 84562 35.64
55 71009 - 72034 - 35849 - 36422 - 351 0.76 351 0.44 84255 - 84313 -
56 64474 - 64474 118.36 32759 - 32755 127.05 474 2.18 474 6.58 110009 2240.50 110009 82.10
57 49791 1605.43 49791 6.80 25456 2239.79 25456 5.48 560 3.77 560 10.10 107410 - 107410 323.92

Avg comp.t. 565.76 271.04 301.31 309.38 1.32 2.01 156.36 205.54
Solved inst. 16.00 42.00 24.00 44.00 57.00 57.00 53.00 56.00
Avg(P-D)/Dgap 6.70% 9.05% 0.00% 2.14%

Table 7.3: Computational results on DIAZ instances

CPMP SS-CFLP CARD+FIX
R. Type Inst. Avg cost increase BP Time BC Time Avg cost increase BP Time BC Time Avg cost increase BP Time BC Time

A 1 713 0.00% 3.58 4.29 1217 0.00% 0.65 0.27 1242 0.00% 5.94 3.84
2 740 0.00% 0.36 0.28 1169 0.00% 0.68 0.27 1169 0.00% 0.24 0.25
3 751 0.00% 1.41 1.33 1141 0.00% 1.17 0.39 1162 0.00% 0.36 0.5
4 651 0.00% 0.46 0.56 1141 0.00% 0.89 0.55 1141 0.00% 0.37 0.41
5 664 0.00% 0.94 0.75 1103 0.00% 4.24 0.44 1103 0.00% 0.45 0.38
6 778 0.00% 0.54 0.67 1240 0.00% 1.33 0.44 1257 0.00% 5.73 16.39
7 787 0.00% 5.08 17.14 1175 0.00% 1.64 1.93 1213 0.00% 1.71 6.45
8 820 0.00% 1891.39 207.91 1184 0.00% 1.84 0.39 1248 0.00% 4.89 8.14
9 715 0.00% 1.92 10.5 1141 0.00% 2.31 0.37 1152 0.00% 1.25 0.74

10 829 0.00% 10.81 84.3 1159 0.00% 0.75 0.28 1248 0.00% 39.25 49.57
A Avg 0.00% 191.65 32.77 0.00% 1.55 0.53 0.00% 6.02 8.67
B 1 713 0.00% 3.18 3.65 1217 0.00% 0.29 0.27 1242 0.00% 5.43 2.44

2 740 0.00% 0.4 0.29 1169 0.00% 0.26 0.26 1169 0.00% 0.23 0.26
3 751 0.00% 1.29 5.65 1150 0.79% 1.13 0.49 1162 0.00% 0.37 0.51
4 651 0.00% 0.56 0.56 1141 0.00% 0.4 0.92 1141 0.00% 0.53 0.47
5 664 0.00% 0.84 0.79 1103 0.00% 4.61 0.43 1103 0.00% 0.37 0.34
6 778 0.00% 0.54 0.77 1240 0.00% 1.05 0.45 1257 0.00% 4.9 11.19
7 787 0.00% 4.69 22.73 1175 0.00% 0.64 0.61 1213 0.00% 1.7 10.86
8 821 0.12% 2559.2 219.64 1190 0.51% 0.74 0.64 1248 0.00% 4.32 7.28
9 715 0.00% 1.36 9.56 1141 0.00% 1.11 0.37 1152 0.00% 1.19 0.79

10 829 0.00% 11.09 77.86 1183 2.07% 0.98 0.69 1248 0.00% 21.28 28.88
B Avg 0.01% 258.32 34.15 0.34% 1.12 0.51 0.00% 4.03 6.30
C 1 713 0.00% 2.01 1.26 1258 3.37% 1.34 0.61 1258 1.29% 0.57 0.44

2 761 2.84% 1.05 0.38 1216 4.02% 1.35 0.63 1216 4.02% 1.65 0.61
3 751 0.00% 1.12 1.16 1155 1.23% 1.01 0.62 1162 0.00% 0.49 0.64
4 652 0.15% 0.81 0.41 1141 0.00% 0.49 0.47 1141 0.00% 0.4 0.51
5 664 0.00% 0.64 0.92 1103 0.00% 5.75 0.98 1103 0.00% 0.59 0.47
6 799 2.70% 0.76 0.84 1274 2.74% 7.1 14.2 1274 1.35% 1.7 11.89
7 787 0.00% 5.45 21.38 1175 0.00% 1.55 0.43 1213 0.00% 2.03 7.39
8 820 0.00% 1843.11 205.44 1195 0.93% 0.5 0.32 1248 0.00% 3.02 13.08
9 715 0.00% 0.85 0.69 1152 0.96% 1.57 0.72 1152 0.00% 1.87 0.61

10 835 0.72% 23.33 79.78 1183 2.07% 0.39 0.35 1248 0.00% 22.55 46.35
C Avg 0.64% 187.91 31.23 1.53% 2.11 1.93 0.67% 3.49 8.20
D 1 744 4.35% 3.45 2.26 1270 4.35% 0.43 0.39 1270 2.25% 0.42 0.38

2 770 4.05% 1.91 0.93 1209 3.42% 2.15 0.81 1209 3.42% 1.82 1.2
3 755 0.53% 3.15 1.72 1186 3.94% 2 2.02 1186 2.07% 3.96 0.72
4 651 0.00% 1.16 0.57 1163 1.93% 0.73 0.5 1165 2.10% 0.78 0.47
5 664 0.00% 0.5 0.64 1103 0.00% 0.58 0.32 1103 0.00% 0.56 0.31
6 778 0.00% 0.67 0.7 1240 0.00% 1.44 0.44 1257 0.00% 3.86 10.79
7 845 7.37% 8.2 20.93 1315 11.91% 54.87 17.3 1315 8.41% 30.29 21.86
8 820 0.00% 41.67 32.87 1285 8.53% 1.8 5.96 1285 2.96% 1.84 6.25
9 717 0.28% 3.02 9.29 1146 0.44% 0.4 0.39 1165 1.13% 1.48 13.5

10 848 2.29% 52.83 60.16 1217 5.00% 0.53 0.52 1253 0.40% 7.27 18.2
D Avg 1.89% 11.66 13.01 3.95% 6.49 2.87 2.27% 5.23 7.37

Computational results on SSCFLP instances, N = 50 (cont’d on the next page)

CPMP SS-CFLP CARD+FIX
R. Type Inst. Avg cost increase BP Time BC Time Avg cost increase BP Time BC Time Avg cost increase BP Time BC Time

E 1 714 0.14% 2.35 0.64 1266 4.03% 2.01 4.39 1266 1.93% 1.68 4.44
2 740 0.00% 0.65 0.26 1170 0.09% 0.21 0.24 1170 0.09% 0.22 0.25
3 751 0.00% 1.1 0.83 1162 1.84% 0.6 0.38 1162 0.00% 0.49 0.37
4 652 0.15% 0.58 0.38 1141 0.00% 0.45 0.43 1141 0.00% 0.61 0.36
5 664 0.00% 1.5 0.69 1103 0.00% 0.55 0.31 1103 0.00% 0.38 0.31
6 787 1.16% 2.72 0.56 1274 2.74% 1.93 12.05 1274 1.35% 2.53 14.78
7 789 0.25% 2.74 12.14 1255 6.81% 16.66 17.32 1255 3.46% 26.15 14.93
8 822 0.24% 507.72 41.87 1266 6.93% 1.62 4.97 1266 1.44% 1.38 7.14
9 718 0.42% 3.51 12 1183 3.68% 1.83 6.45 1183 2.69% 1.83 7.78

10 829 0.00% 2.03 46.01 1277 10.18% 62.53 28.94 1277 2.32% 46.9 30.03
E Avg 0.24% 52.49 11.54 3.63% 8.84 7.55 1.33% 8.22 8.04
F 1 713 0.00% 3.51 3.74 1217 0.00% 0.81 0.24 1244 0.16% 2.68 3.41

2 750 1.35% 0.79 0.65 1181 1.03% 1.11 0.26 1181 1.03% 0.43 0.28
3 755 0.53% 3.05 1.19 1148 0.61% 1.59 0.35 1177 1.29% 2.39 5.62
4 651 0.00% 0.37 0.46 1141 0.00% 0.65 0.57 1141 0.00% 0.7 0.45
5 666 0.30% 1.01 0.76 1161 5.26% 3.25 0.73 1161 5.26% 0.72 0.94
6 778 0.00% 0.45 0.68 1248 0.65% 3.3 3.5 1257 0.00% 2.17 8.33
7 787 0.00% 3.78 17.21 1179 0.34% 1.4 0.8 1232 1.57% 17.54 24.94
8 820 0.00% 1726.75 105.1 1195 0.93% 0.88 0.3 1248 0.00% 3.79 10.93
9 715 0.00% 1.73 7.78 1145 0.35% 0.67 0.29 1156 0.35% 1.07 0.56

10 829 0.00% 5.89 48.53 1188 2.50% 1.79 2.16 1261 1.04% 11.09 34.95
F Avg 0.22% 174.73 18.61 1.17% 1.55 0.92 1.07% 4.26 9.04
G 1 714 0.14% 1.6 1.42 1217 0.00% 0.51 0.26 1244 0.16% 6.57 3.09

2 740 0.00% 0.57 0.3 1181 1.03% 0.7 0.22 1181 1.03% 0.65 0.24
3 751 0.00% 0.62 0.38 1152 0.96% 1.36 0.29 1177 1.29% 0.49 0.37
4 652 0.15% 0.55 0.42 1141 0.00% 1.04 0.57 1141 0.00% 0.65 0.43
5 664 0.00% 1.37 0.71 1103 0.00% 0.76 0.3 1103 0.00% 0.67 0.28
6 778 0.00% 0.7 0.71 1240 0.00% 1.62 0.42 1257 0.00% 2.13 6.16
7 805 2.29% 4.5 25.5 1197 1.87% 1.4 0.57 1274 5.03% 9.97 21.54
8 829 1.10% 1476.55 149.64 1232 4.05% 0.65 0.57 1267 1.52% 6.62 17.29
9 715 0.00% 2.05 11.76 1141 0.00% 0.59 0.31 1171 1.65% 0.55 0.42

10 829 0.00% 3.58 74.21 1183 2.07% 1.54 0.55 1289 3.29% 345.39 43.35
G Avg 0.37% 149.21 26.51 1.00% 1.02 0.41 1.40% 37.37 9.32

Solved instances 70.00 70.00 70.00 70.00 70.00 70.00
Avg. computing time 146.57 23.97 3.24 2.10 9.80 8.13

Table 7.4: Computational results on SSCFLP instances, N = 50

CPMP SS-CFLP CARD+FIX
R. Type Inst. Avg cost increase BP Time BC Time Avg cost increase BP Time BC Time Avg cost increase BP Time BC Time

A 1 1006 0.00% 16.87 66.5 1819 0.00% 9 3.08 1835 0.00% 20.47 69.29
2 966 0.00% 106.59 96.01 1848 0.00% 62.34 23.58 1848 0.00% 50.72 34.07
3 1026 0.00% 15.53 16.48 1834 0.00% 6.24 2.75 1842 0.00% 6.82 31.51
4 982 0.00% 341.49 326.52 1845 0.00% 52.06 26.16 1850 0.00% 194.37 63.89
5 1091 0.00% 279.72 273.44 1876 0.00% 52.46 16.71 1897 0.00% 397.41 227.42
6 954 0.00% 9.54 138.49 1732 0.00% 12.37 2.3 1740 0.00% 7.33 7.35
7 1034 0.00% 91.62 153.59 1834 0.00% 53.56 21.59 1851 0.00% 1853.16 177.35
8 1043 0.00% 698.39 304.22 1812 0.00% 36.58 10.61 1812 0.00% 27.26 38.58
9 1031 0.00% 36.45 185.51 1854 0.00% 239.58 39 1854 0.00% 34.42 43.27

10 1006 0.00% - - 1768 0.00% 81.51 22.82 1814 0.00% - 338.87
A Avg 0.00% 177.36 173.42 0.00% 60.57 0.00 0.00% 288.00 103.16
B 1 1006 0.00% 15.03 52.08 1819 0.00% 8.59 3.5 1835 0.00% 23.23 35.56

2 966 0.00% 93.55 116.12 1848 0.00% 64.6 36.36 1848 0.00% 57.31 33.26
3 1026 0.00% 13.15 15.46 1834 0.00% 1.79 2.72 1842 0.00% 8.24 40.27
4 982 0.00% 334.76 315.12 1845 0.00% 83.9 30.31 1850 0.00% 354.32 65.39
5 1091 0.00% 376.13 286.33 1886 0.53% 101.12 88.5 1897 0.00% 472.52 122.37
6 954 0.00% 10.25 91.65 1732 0.00% 4.76 2.14 1740 0.00% 9.63 8.15
7 1034 0.00% 101.9 79.09 1834 0.00% 45.79 38.04 1851 0.00% 1638.57 116.28
8 1043 0.00% 865.7 151.23 1812 0.00% 17.07 33.63 1812 0.00% 18.09 30.43
9 1031 0.00% 17.38 137.35 1854 0.00% 215.81 33.2 1854 0.00% 40.08 52.49

10 1005 -0.10% - - 1768 0.00% 49.89 38.26 1814 0.00% - 556.08
B Avg -0.01% 203.09 138.27 0.05% 59.33 0.00 0.00% 291.33 106.03
C 1 1077 7.06% 513.24 259.72 2014 10.72% 180.4 210.34 2014 9.75% 126.37 247.74

2 968 0.21% 21.13 61.22 1861 0.70% 1604.47 81.65 1861 0.70% 1621.47 80.73
3 1080 5.26% 13.46 36.99 1848 0.76% 2.41 3.08 1848 0.33% 4.5 2.56
4 1036 5.50% 68.14 80.43 1911 3.58% - 291.57 1911 3.30% - 355.95
5 1464 34.19% 1717.63 2346.76 2198 17.16% 19.5 183.63 2198 15.87% 21.29 138.42
6 970 1.68% 17.26 51.63 1756 1.39% 5.61 2.71 1770 1.72% 74.25 95.81
7 1034 0.00% 82.54 107.31 1861 1.47% 110.7 62.73 1861 0.54% 115.61 83.54
8 1046 0.29% 212.37 135.45 1812 0.00% 4.33 17.81 1812 0.00% 4.42 19.22
9 1077 4.46% 948.6 652.17 1930 4.10% 79.43 58.99 1930 4.10% 39.59 56.08

10 1008 0.20% - 1812.5 1768 0.00% 5.86 4.94 1814 0.00% 1769.3 229.4
C Avg 5.88% 399.37 554.42 3.99% 223.63 0.00 3.63% 419.64 130.95
D 1 1082 7.55% 29.59 135.19 1896 4.23% 178.24 136.26 1896 3.32% 201.72 81.01

2 984 1.86% 23.16 29.04 1905 3.08% 253 33.79 1905 3.08% 285.22 30.02
3 1046 1.95% 10.77 65.05 1935 5.51% 36.97 119.56 1935 5.05% 31.79 39.17
4 1155 17.62% - 664.03 1954 5.91% - 630.64 1954 5.62% - 589.41
5 1137 4.22% 2553.9 581.63 1979 5.49% 100.41 55.76 1979 4.32% 74.97 86.89
6 954 0.00% 3.48 33.01 1740 0.46% 39.95 4.23 1740 0.00% 13.34 7.73
7 1060 2.51% 48.3 84.21 1899 3.54% 20.73 83.24 1899 2.59% 18.57 111.19
8 1043 0.00% 653.97 154.21 1812 0.00% 39.03 11.73 1812 0.00% 47.46 28.93
9 - - - - - - - - - - - -

10 1012 0.60% - 1205.99 1847 4.47% 345.26 254.34 1847 1.82% 269.18 241.53
D Avg 4.03% 474.74 328.04 3.63% 126.70 0.00 2.87% 117.78 135.10

Computational results on SSCFLP instances, N = 100 (cont’d on the next page)

CPMP SS-CFLP CARD+FIX
R. Type Inst. Avg cost increase BP Time BC Time Avg cost increase BP Time BC Time Avg cost increase BP Time BC Time

E 1 1014 0.80% 14.82 31.35 1864 2.47% 19.08 4.54 1864 1.58% 20.05 5.47
2 966 0.00% 29 20.61 1862 0.76% 25.79 19.2 1862 0.76% 24.83 13.08
3 1029 0.29% 4.52 19.64 1842 0.44% 6.05 4.95 1842 0.00% 4.37 5.23
4 990 0.81% 18.72 114.3 1867 1.19% 117.85 34.87 1867 0.92% 93.79 45.01
5 1091 0.00% 43.82 127.41 1931 2.93% 38.73 68.86 1931 1.79% 82.88 107.76
6 960 0.63% 19.58 66.91 1772 2.31% 13.12 27.05 1772 1.84% 22.59 20.44
7 1056 2.13% 698.57 141.39 1869 1.91% 122.1 31.98 1869 0.97% 43.26 18.26
8 1049 0.58% 12.6 6.24 1815 0.17% 4.21 3.38 1815 0.17% 4.08 3.97
9 1036 0.48% 37.84 234.26 1907 2.86% 15.23 33.91 1907 2.86% 13.84 34.25

10 1005 -0.10% - 409.08 1840 4.07% 67.42 63.53 1840 1.43% 139.12 93.6
E Avg 0.56% 97.72 117.12 1.91% 42.96 0.00 1.23% 44.88 34.71
F 1 1020 1.39% 3.05 39.05 1862 2.36% 35.51 5.34 1877 2.29% 17.84 30.62

2 966 0.00% 32.83 53.94 1851 0.16% 21.54 32.64 1851 0.16% 21.36 34.95
3 1032 0.58% 3.26 5.68 1839 0.27% 3.97 2.07 1849 0.38% 44.69 11.16
4 988 0.61% 261.95 236.38 1851 0.33% 85 34.85 1874 1.30% - 220.17
5 1109 1.65% 152.23 109.61 1902 1.39% 3.88 1.87 1949 2.74% 108.74 138.02
6 974 2.10% 17.45 86.05 1764 1.85% 20.81 2 1796 3.22% 17.42 25.82
7 1036 0.19% 137.07 68.78 1834 0.00% 22.57 19.32 1851 0.00% 364.59 35.68
8 1043 0.00% 10.53 80.73 1812 0.00% 5.76 3.33 1812 0.00% 3.88 2.73
9 1036 0.48% 40.01 188.75 1886 1.73% 10.32 3.28 1899 2.43% 27.85 62.37

10 1009 0.30% - 1193.61 1803 1.98% 54.57 15.86 1854 2.21% 659.57 212.28
F Avg 0.73% 73.15 206.26 1.01% 26.39 0.00 1.47% 140.66 77.38
G 1 1027 2.09% 69.35 135.44 1849 1.65% 6.38 3.51 1882 2.56% 21.53 52.14

2 977 1.14% 233.75 121.98 1848 0.00% 23.22 4.93 1848 0.00% 21.26 3.47
3 1043 1.66% 13.44 30.43 1867 1.80% 5.64 2.11 1875 1.79% 5.05 2.27
4 982 0.00% 414.54 284.28 1847 0.11% 51.05 11.57 1869 1.03% - 134.18
5 1127 3.30% 520.23 126.18 1916 2.13% 42.98 57.01 1929 1.69% 9.73 125.11
6 986 3.35% 12.28 110.19 1825 5.37% 9.77 1.78 1874 7.70% 51.44 36.14
7 1037 0.29% 269.35 146.99 1834 0.00% 40.38 30.93 1901 2.70% - 769.95
8 1043 0.00% 445.19 307.44 1813 0.06% 6.8 3.08 1813 0.06% 3.1 20.01
9 1037 0.58% 108.42 183.79 1863 0.49% 7.96 3.14 1910 3.02% 113.29 72.16

10 1017 1.09% - 1307.76 1768 0.00% 76.79 17.07 1814 0.00% 118.87 255.88
G Avg 1.35% 231.84 275.45 1.16% 27.10 13.51 2.05% 43.03 147.13

Solved instances 61.00 67.00 67.00 63.00 62.00 69.00
Avg. computing time 236.75 256.14 80.95 13.51 192.19 104.92

Table 7.5: Computational results on SSCFLP instances, N = 100

CPMP SS-CFLP CARD+FIX
R. Type Inst. Avg cost increase BP Time BC Time Avg cost increase BP Time BC Time Avg cost increase BP Time BC Time

A 1 713 0.00% 2.79 6.16 1217 0.00% 0.33 0.28 1242 0.00% 7.19 2.87
2 740 0.00% 0.9 0.42 1169 0.00% 0.61 0.26 1169 0.00% 0.56 0.25
3 751 0.00% 1.72 1.39 1141 0.00% 1.42 0.4 1162 0.00% 0.81 0.47
4 651 0.00% 0.91 0.59 1141 0.00% 1.28 0.44 1141 0.00% 0.67 0.47
5 664 0.00% 1.07 0.81 1103 0.00% 3.73 0.89 1103 0.00% 0.43 0.52
6 778 0.00% 0.58 0.67 1240 0.00% 1.43 0.44 1257 0.00% 6.36 9.49
7 787 0.00% 4.09 17.17 1175 0.00% 1.8 0.67 1213 0.00% 1.74 4.69
8 820 0.00% 1989.29 202.28 1184 0.00% 1.66 0.31 1248 0.00% 4.61 8.19
9 715 0.00% 2.16 9.98 1141 0.00% 1.84 0.35 1152 0.00% 1.91 0.8

10 829 0.00% 9.33 71.52 1159 0.00% 0.73 0.29 1248 0.00% 26.37 45.52
A Avg 0.00% 201.28 31.10 0.00% 1.48 0.43 0.00% 5.07 7.33
B 1 713 0.00% 5.67 4.89 1217 0.00% 0.32 0.27 1242 0.00% 9.93 3.39

2 740 0.00% 1 0.36 1169 0.00% 0.27 0.27 1169 0.00% 0.64 0.27
3 751 0.00% 2.08 1.21 1150 0.79% 1.22 0.58 1162 0.00% 0.78 0.46
4 651 0.00% 1.12 0.64 1141 0.00% 0.29 0.47 1141 0.00% 0.67 0.47
5 664 0.00% 0.91 0.76 1103 0.00% 3.1 0.53 1103 0.00% 0.37 0.41
6 778 0.00% 1.05 0.71 1240 0.00% 1.56 0.45 1257 0.00% 7.41 14
7 787 0.00% 5.08 24.78 1175 0.00% 1.1 0.57 1213 0.00% 2.37 8.44
8 821 0.12% 2142.42 203.07 1190 0.51% 0.48 0.47 1248 0.00% 2.91 7.85
9 715 0.00% 1.77 15.73 1141 0.00% 0.89 0.37 1152 0.00% 1.96 0.7

10 829 0.00% 9.95 83.41 1183 2.07% 0.95 0.59 1248 0.00% 32.15 47.76
B Avg 0.01% 217.11 33.56 0.34% 1.02 0.46 0.00% 5.92 8.38
C 1 713 0.00% 1.79 2.05 1258 3.37% 1.13 0.52 1258 1.29% 0.76 0.44

2 761 2.84% 0.81 0.51 1216 4.02% 1.57 1.77 1216 4.02% 2.26 0.55
3 751 0.00% 1.99 1.3 1155 1.23% 0.95 0.53 1162 0.00% 0.74 0.46
4 652 0.15% 0.82 0.5 1141 0.00% 0.5 0.5 1141 0.00% 0.7 0.47
5 664 0.00% 1.28 0.94 1103 0.00% 2.37 0.51 1103 0.00% 0.34 0.35
6 799 2.70% 1.02 0.93 1274 2.74% 7.18 13.41 1274 1.35% 3.5 10.85
7 787 0.00% 8.03 29.17 1175 0.00% 0.71 0.43 1213 0.00% 2.21 4.88
8 820 0.00% 1702.21 167.71 1195 0.93% 0.7 0.29 1248 0.00% 3.86 9.36
9 715 0.00% 0.93 0.55 1152 0.96% 1.8 0.61 1152 0.00% 1.57 0.59

10 835 0.72% 37.26 59.06 1183 2.07% 0.54 0.37 1248 0.00% 19.19 26.98
C Avg 0.64% 175.61 26.27 1.53% 1.75 1.89 0.67% 3.51 5.49
D 1 744 4.35% 3.7 5.55 1270 4.35% 0.78 0.37 1270 2.25% 0.69 0.4

2 770 4.05% 2.53 0.88 1209 3.42% 2.53 0.69 1209 3.42% 2.23 0.74
3 755 0.53% 2.61 1.91 1186 3.94% 2.07 2.01 1186 2.07% 4.1 0.66
4 651 0.00% 0.97 0.59 1163 1.93% 0.41 0.48 1165 2.10% 1.41 0.44
5 664 0.00% 0.64 0.8 1103 0.00% 0.92 0.34 1103 0.00% 0.717 0.44
6 778 0.00% 0.79 0.7 1240 0.00% 1.35 0.46 1257 0.00% 4.7 9.59
7 845 7.37% 9.55 24.22 1315 11.91% 45.34 18.25 1315 8.41% 45.76 18.81
8 820 0.00% 71.68 26.44 1285 8.53% 2.66 6.95 1285 2.96% 2.38 6.97
9 717 0.28% 3.08 21.18 1146 0.44% 0.72 0.37 1165 1.13% 1.83 6.34

10 848 2.29% 32.91 88.74 1217 5.00% 0.41 0.44 1253 0.40% 9.22 15.71
D Avg 1.89% 12.85 17.10 3.95% 5.72 3.04 2.27% 7.30 6.01

Computational results on CCLP instances, N = 50 (cont’d on the next page)

CPMP SS-CFLP CARD+FIX
R. Type Inst. Avg cost increase BP Time BC Time Avg cost increase BP Time BC Time Avg cost increase BP Time BC Time

E 1 714 0.14% 1.87 0.7 1266 4.03% 2.85 3.28 1266 1.93% 3.29 3.26
2 740 0.00% 0.71 0.34 1170 0.09% 0.65 0.24 1170 0.09% 0.66 0.24
3 751 0.00% 1.3 0.98 1162 1.84% 0.76 0.36 1162 0.00% 0.85 0.35
4 652 0.15% 0.72 0.42 1141 0.00% 1.2 0.37 1141 0.00% 1.2 0.37
5 664 0.00% 1.13 0.85 1103 0.00% 0.73 0.27 1103 0.00% 0.77 0.27
6 787 1.16% 2.2 0.63 1274 2.74% 3.18 9.31 1274 1.35% 4.08 9.25
7 789 0.25% 2.33 20.35 1255 6.81% 41.83 17.23 1255 3.46% 24.35 17.25
8 822 0.24% 667.17 50.25 1266 6.93% 1.46 4.13 1266 1.44% 1.72 4.09
9 718 0.42% 3.29 10.07 1183 3.68% 2.5 6.16 1183 2.69% 2.45 6.14

10 829 0.00% 1.81 35.08 1277 10.18% 78.67 29.24 1277 2.32% 59.32 29.21
E Avg 0.24% 68.25 11.97 3.63% 13.38 7.06 1.33% 9.87 7.04
F 1 713 0.00% 3.92 4.66 1217 0.00% 0.92 0.24 1244 0.16% 3.2 2.9

2 750 1.35% 1.12 0.84 1181 1.03% 0.91 0.29 1181 1.03% 0.86 0.25
3 755 0.53% 2.65 2.73 1148 0.61% 1.53 0.35 1177 1.29% 2.43 0.93
4 651 0.00% 0.94 0.55 1141 0.00% 1 0.4 1141 0.00% 0.62 0.42
5 666 0.30% 1.08 0.74 1161 5.26% 3.61 1.62 1161 5.26% 0.87 0.53
6 778 0.00% 1.06 0.66 1248 0.65% 2.06 3.77 1257 0.00% 3.1 6.18
7 787 0.00% 2.62 21.56 1179 0.34% 1.88 0.73 1232 1.57% 13.23 15.73
8 820 0.00% 1606.42 87.3 1195 0.93% 0.76 0.28 1248 0.00% 2.97 10.85
9 715 0.00% 2.41 10.14 1145 0.35% 1.04 0.27 1156 0.35% 1.55 0.52

10 829 0.00% 5.16 45.19 1188 2.50% 1.81 3.12 1261 1.04% 19.63 28.56
F Avg 0.22% 162.74 17.44 1.17% 1.55 1.11 1.07% 4.85 6.69
G 1 714 0.14% 2.19 1.85 1217 0.00% 0.71 0.28 1244 0.16% 15.44 2.97

2 740 0.00% 0.73 0.37 1181 1.03% 0.93 0.23 1181 1.03% 1.38 0.22
3 751 0.00% 0.81 0.51 1152 0.96% 0.98 0.27 1177 1.29% 0.78 0.38
4 652 0.15% 1.27 0.55 1141 0.00% 1.15 0.53 1141 0.00% 0.83 0.43
5 664 0.00% 1.17 0.74 1103 0.00% 0.44 0.29 1103 0.00% 0.602 0.26
6 778 0.00% 1.02 0.59 1240 0.00% 1.14 0.42 1257 0.00% 4.12 5.58
7 805 2.29% 7.89 23.76 1197 1.87% 1.24 0.55 1274 5.03% 17.1 17.58
8 829 1.10% 742.11 99.29 1232 4.05% 0.7 0.48 1267 1.52% 8.97 13.21
9 715 0.00% 3.91 9.69 1141 0.00% 0.71 0.31 1171 1.65% 0.93 0.48

10 829 0.00% 3.39 33.45 1183 2.07% 1.36 0.44 1289 3.29% 289.07 39.83
G Avg 0.37% 76.45 17.08 1.00% 0.94 0.38 1.40% 33.92 8.09

Solved instances 70.00 70.00 70.00 70.00 70.00 70.00
Avg. computing time 130.61 22.07 3.69 2.05 10.06 7.00

Table 7.6: Computational results on CCLP instances, N = 50

CPMP SS-CFLP CARD+FIX
R. Type Inst. Avg cost increase BP Time BC Time Avg cost increase BP Time BC Time Avg cost increase BP Time BC Time

A 1 1006 0.00% 26.84 79.34 1819 0.00% 8.15 2.89 1835 0.00% 30.07 37.9
2 966 0.00% 96.04 95.86 1848 0.00% 61.14 22.86 1848 0.00% 78.58 24.36
3 1026 0.00% 13.88 27.59 1834 0.00% 5.12 2.48 1842 0.00% 19.8 16.23
4 982 0.00% 234.13 210.62 1845 0.00% 121.26 36.39 1850 0.00% 418.73 88.07
5 1091 0.00% 385.7 312.55 1876 0.00% 63.01 21.85 1897 0.00% 432.94 115.58
6 954 0.00% 5.07 92.97 1732 0.00% 10.94 2.11 1740 0.00% 20.47 6.07
7 1034 0.00% 125.05 112.1 1834 0.00% 60.19 15.77 1851 0.00% 1700.4 111.42
8 1043 0.00% 801.15 225.63 1812 0.00% 20.07 20.68 1812 0.00% 38.43 27.34
9 1031 0.00% 16.27 185.24 1854 0.00% 336.79 21.4 1854 0.00% 41.76 35.92

10 1009 0.00% - - 1768 0.00% 193.46 22.68 1814 0.00% - 563.39
A Avg 0.00% 189.35 149.10 0.00% 88.01 0.00 0.00% 309.02 102.63
B 1 1006 0.00% 29.83 76.75 1819 0.00% 3.59 3.74 1835 0.00% 17.88 45.4

2 966 0.00% 147.42 100.78 1848 0.00% 85.45 27.99 1848 0.00% 77.28 22.72
3 1026 0.00% 17.24 34.53 1834 0.00% 1.8 2.37 1842 0.00% 12.88 12.95
4 982 0.00% 318.39 302.26 1845 0.00% 83.6 28.99 1850 0.00% 322.68 154.24
5 1091 0.00% 527.71 215.07 1886 0.53% 132.47 42.22 1897 0.00% 586.07 226.39
6 954 0.00% 14.31 151.42 1732 0.00% 6.47 2.04 1740 0.00% 11.08 3.89
7 1034 0.00% 110.62 90.89 1834 0.00% 45.29 35.37 1851 0.00% 2006.64 75.54
8 1043 0.00% 1102.96 291.21 1812 0.00% 26.07 29.7 1812 0.00% 28.35 30.97
9 1031 0.00% 17.77 232 1854 0.00% 450.44 39.76 1854 0.00% 31.56 38.95

10 1005 -0.40% - - 1768 0.00% 173.77 33.1 1814 0.00% - 254.55
B Avg -0.04% 254.03 166.10 0.05% 100.90 0.00 0.00% 343.82 86.56
C 1 1077 7.06% 488.07 396.71 2014 10.72% 223.26 165.67 2014 9.75% 197.89 206.83

2 968 0.21% 37.93 57.88 1861 0.70% 1844.79 93.03 1861 0.70% 1782.91 69.62
3 1080 5.26% 8.51 47.26 1848 0.76% 1.99 2.74 1848 0.33% 1.85 2.61
4 1036 5.50% 60.25 61.63 1911 3.96% - 286.15 1911 3.68% - 125.93
5 1464 34.19% 1229.49 2395.68 2198 17.16% 29.42 97.58 2198 15.87% 33.88 114.57
6 970 1.68% 29.83 61.27 1756 1.39% 4.77 3.82 1770 1.72% 79.99 23.29
7 1034 0.00% 83.06 145.29 1861 1.47% 116.95 66.91 1861 0.54% 122.32 54.17
8 1046 0.29% 243.77 131.71 1812 0.00% 3.6 7.31 1812 0.00% 3.5 22.08
9 1077 4.46% 544.75 503.58 1930 4.10% 149.92 67.29 1930 4.10% 59.19 47.88

10 1008 -0.10% - 2487.29 1768 0.00% 9.19 6.6 1814 0.00% 3076.97 195.62
C Avg 5.85% 302.85 628.83 4.03% 264.88 0.00 3.67% 595.39 86.26
D 1 1082 7.55% 25.13 136.42 1896 4.23% 541.27 61.75 1896 3.32% 707.12 82.34

2 984 1.86% 34.68 24.46 1905 3.08% 378.81 44.4 1905 3.08% 416.34 41.19
3 1046 1.95% 5.96 47.97 1935 5.51% 69.47 61.3 1935 5.05% 71.78 40.46
4 1155 19.25% - 851.72 1954 5.91% - 352.02 1954 5.62% 3661 690.02
5 1137 4.22% 1169.39 1071.69 1979 5.49% 126.98 64.11 1979 4.32% 110.15 66.64
6 954 0.00% 2.56 69.86 1740 0.46% 21.09 6.56 1740 0.00% 8.96 6.6
7 1060 2.51% 34.98 77.52 1899 3.54% 15.92 103.92 1899 2.59% 16.49 92.62
8 1043 0.00% 845.98 437.8 1812 0.00% 34.3 16.22 1812 0.00% 58.2 23.84
9 - - - - - - - - - - - -

10 1012 0.30% - 456.6 1847 4.47% 593.93 124.35 1847 1.82% 493.66 135.71
D Avg 4.18% 302.67 352.67 3.63% 222.72 0.00 2.87% 615.97 131.05

Computational results on CCLP instances, N = 100 (cont’d on the next page)

CPMP SS-CFLP CARD+FIX
R. Type Inst. Avg cost increase BP Time BC Time Avg cost increase BP Time BC Time Avg cost increase BP Time BC Time

E 1 1014 0.80% 23.62 251.21 1864 2.47% 21.16 21.86 1864 1.58% 21.69 21.95
2 966 0.00% 32.14 23.74 1862 0.76% 57.28 12.95 1862 0.76% 47.48 13.09
3 1029 0.29% 1.99 5.78 1842 0.44% 2.22 4.27 1842 0.00% 3.01 4.31
4 990 0.81% 44.7 49.54 1867 1.19% 104.2 44.91 1867 0.92% 76.43 45.13
5 1091 0.00% 61.7 97.65 1931 2.93% 79.51 75.74 1931 1.79% 118.32 76.25
6 960 0.63% 48.44 131.38 1772 2.31% 32 16.93 1772 1.84% 38.6 16.92
7 1056 2.13% 1235.52 143.33 1869 1.91% 152.4 16.6 1869 0.97% 84.82 16.63
8 1049 0.58% 12.57 46.01 1815 0.17% 3.1 3.11 1815 0.17% 3.92 3.14
9 1036 0.48% 41.59 234.74 1907 2.86% 14.12 33.79 1907 2.86% 19.01 33.89

10 1005 -0.40% 3661 403.3 1840 4.07% 104.82 114.49 1840 1.43% 109.16 113.8
E Avg 0.53% 516.33 138.67 1.91% 57.08 0.00 1.23% 52.24 34.51
F 1 1020 1.39% 2.59 34.27 1862 2.36% 56.29 3.94 1877 2.29% 22.18 38.03

2 966 0.00% 64.55 56.57 1851 0.16% 69.81 24.15 1851 0.16% 22.87 22.43
3 1032 0.58% 1.92 6.65 1839 0.27% 5.88 1.93 1849 0.38% 66.74 10.51
4 988 0.61% 958.77 358.1 1851 0.33% 112.76 27.49 1874 1.30% 3661 273.69
5 1109 1.65% 183.12 158.03 1902 1.39% 4.78 1.73 1949 2.74% 144.38 141.36
6 974 2.10% 11.05 166.72 1764 1.85% 33.32 1.87 1796 3.22% 21.24 67.55
7 1036 0.19% 133.31 66.98 1834 0.00% 35.01 20.13 1851 0.00% 606.29 78.48
8 1043 0.00% 11.76 75.27 1812 0.00% 6.4 3.11 1812 0.00% 3.29 3.46
9 1036 0.48% 18.02 178.43 1886 1.73% 28.03 4.31 1899 2.43% 23.82 62.28

10 1009 0.00% - 699.05 1803 1.98% 222.18 26.82 1854 2.21% 197.66 408.88
F Avg 0.70% 153.90 180.01 1.01% 57.45 0.00 1.47% 476.95 110.67
G 1 1027 2.09% 93.48 109.17 1849 1.65% 7.21 3.51 1882 2.56% 11.83 61.79

2 977 1.14% 267.2 167.44 1848 0.00% 51.77 8.04 1848 0.00% 31.49 7.07
3 1043 1.66% 41.32 55.09 1867 1.80% 4.77 2.18 1875 1.79% 3.55 2.11
4 982 0.00% 662.23 227.18 1847 0.11% 177.36 11.77 1869 1.08% - 72.14
5 1127 3.30% 500.26 124 1916 2.13% 59.01 40.03 1929 1.69% 8.32 46.28
6 986 3.35% 18.83 88.46 1825 5.37% 31.98 1.53 1874 7.70% 42.17 28.24
7 1037 0.29% 328.74 195.26 1834 0.00% 88.7 15.34 1901 2.70% - 379.74
8 1043 0.00% 1603.61 152.28 1813 0.06% 6.62 2.47 1813 0.06% 2.55 17.42
9 1037 0.58% 88.21 142.41 1863 0.49% 6.44 2.43 1910 3.02% 179.88 87.22

10 1017 0.79% 3661 1052.6 1768 0.00% 94.35 10.42 1814 0.00% 177.12 46.38
G Avg 1.32% 726.49 231.39 1.16% 52.82 9.77 2.06% 57.11 74.84

Solved instances 63.00 67.00 67.00 63.00 64.00 69.00
Avg. computing time 349.37 263.82 120.55 9.77 350.07 89.50

Table 7.7: Computational results on CCLP instances, N = 100

168 – Ch. 7 A B&P framework for capacitated network location

Chapter 8

A final note

As a final assessment, we try to gather the results presented in each chapter. This
aims at providing a guideline for devising effective algorithms for partitioning
problems.

8.1 Using dual information for bounding and vari-

able fixing

A first key issue in decomposition methods is that of finding a technique with good
convergence properties for computing the dual bound. The design of such method
is again a combination of different aspects.

The first choice to be made is which classes of constraints should be put in
the master problem and which should be treated in the subproblems. As recalled
in Chapter 1, the space described by the constraints in the pricing problem is
convexified, so it is tempting to treat in that way as much constraints as possible.
If the pricing problem has the integrality property, there is no improvement in
the dual bound with respect to the LP relaxation bound. On the other hand, the
pricing problem has to be solved iteratively, and so it should be still tractable.

The design of an effective branch-and-price algorithm heavily relies on iden-
tifying, or devising, effective methods to solve non trivial pricing problems. The
partitioning problems described in the introduction can be decomposed in such a
way that the pricing problem is either a knapsack problem (KP) [74] [55] or an
extension of it. The KP is a typical example of a NP-hard combinatorial opti-
mization problem well solved in practice [72] [89]. It is trivial to say that devising
a fast procedure for the pricing, and restricting the generation of columns to the
optimal ones only is far better than resorting to heuristics and relaxations, also
from an experimental point of view. However, it is untrivial to observe that even a
few additional constraints may complicate the elegant structure of the algorithms

170 – Ch. 8 A final note

for the KP. In our experience, the procedure for pricing has still to be tailored to
the particular problem at hand. For instance, the pricing routine introduced for
the packing algorithms of Chapters 3 and 4 actually improved the performance of
the method. It is even more interesting to note that it was experimentally useful
to search for the best column instead of considering a set of good columns. This
is easily explained with the observation that a set of good columns is useful only
if the columns encode a good variety of solutions.

A second factor impacting on the convergence of the method is the presence
of stability problems during the iterative solution of the restricted master linear
programs (RMPs). The problem of stability received much attention recently [11].
As observed in [92], due to the high ratio between the number of variables and
the number of constraints, the optimal solution of a RMP is often degenerate.
This corresponds to poor stability in the dual solution: the dual variables assume
extreme values, the pricing routine identifies columns coding vertices far away from
the MP optimum, and the poor quality of these columns causes the solution of
the RMP to be almost the same, for several iterations. An idea on the stability
of a dual solution can be obtained by looking at the values of the Lagrangean
relaxation corresponding to each dual solution. Instability appears as subsequent
relaxed solutions assuming values in a wide range.

Three families of methods have been devised to overcome this problem. The
first one is that of box methods [33]. A specialization of this technique for parti-
tioning problems is presented in [98]. The main idea is to bound the value of the
dual variables, or penalize their deviation from a central value, adding suitable
constraints in the dual problem. Each constraint in the dual problem corresponds
to a column in the primal, hence these have no effect on the pricing routine. How-
ever, an additional designing effort is needed, since several parameters should be
tuned in order to make these methods work effectively.

In our experience, the second way of obtaining a smooth improvement of the
dual is to solve the pricing problem using a dual solution that is an interior point
of the optimal dual polyhedron [92]. In fact, it is a common practice to relax
the set partitioning formulation into a set covering formulation (see Chapters 3,
4, 5 and 6). Once a RMP is optimized with the simplex algorithm, the optimal
solution corresponds to a vertex of the dual polyhedron. Instead, an inner point
of the space of the optimal dual solutions would yield the generation of more
balanced columns. Therefore, after the computation of each linear program, the
structure of the optimal solution can be exploited by enforcing the fulfilment of
the complementary slackness conditions. This can be done by changing the sense
of the constraints and the right-hand-side terms in the model. In this way the
space of valid dual solutions is restricted to the space of optimal dual solutions.
The resulting problem is optimized several times with random objective functions,

Using dual information for bounding and variable fixing 171

in order to obtain solutions corresponding to different vertices of the optimal dual
polyhedron. Then, an inner point is found averaging on the coordinates of the
dual solutions identified in this way.

A third method is resorting to Lagrangean/Surrogate relaxation [96]. Once a
RMP is solved, the corresponding dual solution is used to compute a Lagrangean
relaxation bound (see, for instance, Chapter 6). Then, the value of all the dual
variables is scaled by a parameter t, and a new Lagrangean dual bound is com-
puted. The value of the parameter t that gives the best Lagrangean bound can be
found by dicotomic search. Finally, the scaled dual vector is used for pricing.

The second method is well-suited for applications in which the pricing problem
is very hard to solve, as it shifts all the computing effort for stabilization to solving
a sequence of RMP instances.The third one works well for applications in which
the pricing problem is easy, since it requires to run the pricing procedure for each
choice of the parameter. The first one is the most versatile, but has the drawback
of requiring a fine parameter tuning.

As in the third method, we improved the convergence properties and avoided
instability exploiting the equivalence between Dantzig-Wolfe decomposition and
Lagrangean relaxation. In particular, we devised a multiple pricing routine, that
instead of computing the best columns corresponding to the optimal dual variables
only, further explores the surrounding dual space with a standard subgradient
technique. In this way vector of dual variables can be found, that yields better
Lagrangean relaxation values. Whenever such a vector is found, the columns
corresponding to the Lagrangean relaxed solution are inserted in the RMP. The
schema in Figure 8.1(a) represents the generation of columns with a standard
pricing method, when the space corresponding to the variables of the original
formulation is considered: each dot represents a column, that is an integer point
in the space of the original variables. Initially, only a subset of the feasible points
is known (those represented in black in the figure), corresponding to columns
inserted in the RMP. After the optimization of the RMP, extreme vertices of the
convexified constraints region are generated and added to the RMP (represented
in light gray in the figure). In Figure 8.1(b) we represent the effect of coupling the
traditional pricing with a subgradient-like search for better dual solutions. During
this search, vertices far from the current optimal one can be encountered, that
may nevertheless represent basic columns of the optimal solution (marked with
the large circle in the figure).

This technique was used in the algorithms presented in Chapters 5, 6 and 7.
It always showed to be experimentally useful. In order to obtain a good updating
step in the subgradient procedure, the structure of the best column for each class
must be known at each iteration. The more accurate this information is, the more
effective the updating step is. When the structure of the optimal column for a

172 – Ch. 8 A final note

(a) (b)

Figure 8.1: Generation of new columns

class is not known, we found it useful to look at a relaxed subproblem solution,
instead of computing a heuristic one. In the algorithm for the OOEBPP, described
in Chapter 4, the fractional solution of the subproblems is used in place of the
integer one. Experimental results show the effectiveness of this technique.

Furthermore, each time the solution of a Lagrangean Relaxed is computed,
variable fixing procedures can be activated. In most cases, these reduction tests can
be done with a little computational effort. Once again, the application of reduction
procedures exploiting exact information on the subproblem solution is described
for location problems in Chapter 7, while procedures that use an approximation
are devised for packing problems, as described in Chapters 3 and 4. Especially in
the case of location problems, these showed be essential in reducing the size of the
problem.

8.2 Using the fractional solutions for branching

and heuristics

8.2.1 Branching rules

Branching is a key issue in any implicit enumeration algorithm. When a column
generation method is applied, an additional designing effort is required, since many
variables of the problem are not considered. A discussion about common pitfalls
in this context is presented, for instance, in [8] and [51]. When dealing with
decomposition methods, instead of branching on the variables of the MP, it is

Using the fractional solutions for branching and heuristics 173

better to rebuild a fractional solution of the original formulation and to branch
on the original variables. When considering partitioning problems, a (fractional)
solution for the original formulation (1.4) – (1.6), described by a set of vectors xj

can be found by looking at a (fractional) solution of the master problem (1.9) –
(1.10) as follows:

xj =
∑

k∈Kj

x̄j
kz

j
k.

Each component xj
i represents how much the element i is assigned to class j in

the fractional solution. We used a similar technique in all the algorithms presented
in this thesis.

The most effective way of branching must still be tailored to the specific ap-
plication. However, the following guidelines yielded good results in our contexts:
if there are variables that represent the opening of a class, like setup variables in
location problems, it is better to fix the value of this variables through a binary
branching rule. This method was applied in the packing algorithms presented in
Chapters 3 and 4, and showed to be the best approach for some of the models
presented in Chapter 7. In both cases, in fact, the fixing of these variables suffices
to either significantly improve the incumbent primal solution or fathom the node.

If no such set of variables is present in the model, or whenever the relaxed
solution is still fractional after the exploration of the first stage branching tree,
binary branching on partitioning constraints is the most effective strategy: the
element i whose component is non-zero in the maximum number of xj vectors is
selected, and the set of classes is partitioned in two subsets, forbidding in each
branch the assignment of i to the classes in one of the two subsets. For instance,
we adopted this approach in the algorithm for the multilevel assignment problem
of Chapter 5, and for the capacitated p-median problem in Chapter 6. In the first
case, a simple variation in which a third branch is considered and explored in a
depth-first fashion allowed a substantial improvement in the computing time.

8.2.2 Finding feasible solutions

In primal heuristics, like in branching rules, it is better to run rounding procedures
on the fractional solution of the original formulation instead of trying to search for
integer solutions of the MP. The framework described by Martello and Toth for
the GAP seems to be the most appropriate in this context [73]. Let J(i) ⊆ J be
the set of classes to which element i can be assigned, without violating the corre-
sponding block of constraints (1.2). Let, for each element i, j ′(i) ∈ argmaxj∈J(i)x

j
i

be the class corresponding to the highest fractional assignment. Each j ′(i) can

174 – Ch. 8 A final note

be considered the ‘most desirable’ class in which i can be inserted. In a similar
way, we search for the second ‘most desirable’ class: j ′′(i) ∈ argmaxj∈J(i)\{j′(i)}x

j
i .

Then, we select the element i with maximum regret value x
j′(i)
i − x

j′′(i)
i and we

assign it to j ′(i). This implies a resource consumption on the corresponding class,
hence some J(i) set should be updated. The computation of the regret values and
the assignment of elements to classes is iterated until either a feasible partitioning
is found, or some J(i) set is empty. In the second case, the heuristic fails in finding
a feasible solution.

We experimentally observed that in many cases, it is easy for this heuristic to
identify feasible solution, and coupling this technique with standard neighborhood
search yields tight primal bounds already at the root node. In fact, this kind
of techniques were embedded in the algorithms of chapters 5, 6 and 7. On the
opposite, the absence of assignment costs made this heuristic blind in packing
problems like the ones presented in chapters 3 and 4. Furthermore, the RMP
solutions produced during the optimization of the OOEBPP (Chapter 4) were
highly fractional, and provided misleading values for the heuristic. Even thought,
in these cases, randomized heuristics run in a preprocessing step suffice to obtain
tight primal bounds, effectively exploiting fractional solutions to identify upper
bounds is still an open problem.

8.3 Research directions

As outlined in the preface, the main objective of this work was to provide a detailed
insight of branch-and-price algorithms, by highlight both potential and limits of
this approach. We considered the class of partitioning problems, whose models
are general enough to describe many real-world scenarios while yielding tractable
formulations. Indeed, with similar branch-and-price frameworks we were able to
tackle a good variety of them.

The strive is now in identifying techniques to automatically analyze a model,
choose a suitable decomposition schema and solve the problem with column gen-
eration algorithms. This would definitely unfold the modeling and computational
potential of branch-and-price for the realization of a “next-generation” of general
purpose optimization tools.

Bibliography

[1] CPLEX 8.1. ILOG: Homepage http://www.ilog.com, Last access,
15/09/2005.

[2] K. Aardal. Capacitated facility location: Separation algorithms and compu-
tational experience. Mathematical Programming, 81:149–175, 1998.

[3] P. Avella, A. Sassano, and I. Vasilév. Computational study of large scale
p-median problems. Optimization Online, 625, 2003. Optimization Online
site : www.optimization-online.org.

[4] L. Bahiense, N. Maculan, and C.A. Sagastizábal. The volume algorithm re-
visited. relation with bundle methods. Mathematical Programming, 94(1):41–
69, 2002.

[5] E. Balas and E. Zemel. An algorithm for large zero-one knapsack problems.
Operations Research, 28:1130–1154, 1980.

[6] R. Baldacci, E. Hadjiconstantinou, V. Maniezzo, and A. Mingozzi. A new
method for solving capacitated location problems based on a set partitioning
approach. Computers and Operations Research, 29:365–386, 2002.

[7] F. Barahona and R. Anbil. The volume algorithm: Producing primal solu-
tions with a subgradient method. Mathematical Programming A, 87, 2000.

[8] C. Barnhart, E. L. Johnson, G.L. Nemhauser, M. W.P. Savelsbergh, and
P. H. Vance. Branch-and-price: Column generation for solving huge integer
programs. Operations Research, 46:316–329, 1998.

[9] J.E. Beasley. A note on solving large p-median problems. European Journal
of Operational Research, 21:270–273, 1985.

[10] C. Beltran, C. Tadonki, and J. Vial. Solving the p-median problem with a
semi-lagrangian relaxation. Technical report, University of Geneva, 2004.

176 BIBLIOGRAPHY

[11] H. Ben Amor, J. Desrosiers, and A. Frangioni. Stabilization in column gen-
eration. Technical report, 2004.

[12] J.O. Berkey and P. Y. Wang. Two-dimensional finite bin-packing algorithms.
Journal of the Operational Research Society, 38:423–429, 1987.

[13] A. Bettinelli, A. Ceselli, and G. Righini. A branch-and-price algorithm for
the bi-dimensional level strip packing problem. Talk at AIRO-Winter ’05,
Cortina d’Ampezzo (Italy), January 2005.

[14] A. Ceselli. Algoritmi branch and bound e branch and price per il problema
delle p-mediane con capacità. Master’s thesis, Dipartimento di Tecnologie
dell’Informazione, Università degli Studi di Milano, Crema, Italy, 2002. In
Italian.

[15] A. Ceselli. Two exact algorithms for the capacitated p-median problem.
4OR, 1(4):319–340, 2003.

[16] A. Ceselli, F. Liberatore, and G. Righini. A computational evaluation of a
general branch-and-price framework for capacitated network location prob-
lems. Technical report, DTI – Univeristà di Milano, 2005.

[17] A. Ceselli and G. Righini. A branch-and-price algorithm for the multilevel
generalized assignment problem. Technical report, DTI – Università di Mi-
lano, 2004.

[18] A. Ceselli and G. Righini. A branch-and-price algorithm for the capacitated
p-median problem. Networks, 45(3):125 – 142, 2005.

[19] A. Ceselli and G. Righini. An optimization algorithm for a penalized knap-
sack problem. Operations Research Letters, in press, available online, 2005.

[20] A. Ceselli and G. Righini. An optimization algorithm for the ordered open-
end bin-packing problem. Talk presented at ECCO XVIII, Minsk, May 2005.

[21] N. Christofides and J.E. Beasley. A tree search algorithm for the p-median
problem. European Journal of Operational Research, 10:196–204, 1981.

[22] N. Christofides and J.E. Beasley. Extensions to a lagrangean relaxation
approach for the capacitated warehouse location problem. European Journal
of Operational Research, 12:19–28, 1983.

[23] E.G. Coffman Jr., M. R. Garey, and D. S. Johnson. Approximation algo-
rithms for bin packing: a survey. PWS Publishing Company, Boston, U.S.A.,
1996.

BIBLIOGRAPHY 177

[24] G. Cornueojols, M.L. Fisher, and G.L. Nemhauser. Location of bank ac-
counts to optimize float: an analytic study of exact and approximate algo-
rithms. Management Science, 23(8):789–810, 1977.

[25] J. Current, M. Daskin, and D. Schilling. Discrete Network Location Models,
pages 81–118. Springer Verlag, Berlin, 2002.

[26] G. Desaulniers, J. Desrosiers, and M.M. Solomon, editors. Column Genera-
tion. Springer, 2005.

[27] J. Desrosiers and M.E. Lübbecke. Selected topics in column generation.
Technical report, HEC Montreal, 2002. to appear in Operations Research.

[28] J.A. Diaz and E. Fernández. A branch-and-price algorithm for the single
source capacitated plant location problem. Journal of the Operational Re-
search Society, 53:728–740, 2002.

[29] J.A. Diaz and E. Fernández. Hybrid scatter search and path relinking for the
capacitated p-median problem. European journal of Operational Research,
In press.

[30] H. Dickhoff, G. Scheithauer, and J. Terno. Cutting and packing, pages 393–
413. Wiley, New York, 1997.

[31] J.J. Dongarra. Performance of various computers using standard linear equa-
tions software. University of Tennessee, 2005. Technical Report, available
at http://www.netlib.org/benchmark/performance.ps.

[32] K. Dowsland. Some experiments with simulated annealing techniques for
packing problems. European Journal of Opeerations Research, 68:389–399,
1993.

[33] O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column
generation. Discrete Mathematics, 194:229–237, 1999.

[34] S. P. Fekete and J. Schepers. On higher-dimensional packing iii: Exact
algorithms. Technical Report 97–290, 1997.

[35] S. P. Fekete and J. Schepers. A combinatorial characterization of higher-
dimensional orthogonal packing. Mathematics of Operations Research,
29:353–368, 2004.

[36] S. P. Fekete and J. Schepers. A general framework for bounds for higher-
dimensional orthogonal packing problems. Mathematical Methods of Opera-
tions Research, 60(2):311–329, 2004.

178 BIBLIOGRAPHY

[37] A. Frangioni. About lagrangian methods in integer optimization. Annals of
Operations Research, 139:163 – 193, 2005.

[38] R. Freling, H.E. Romeijn, D.R. Morales, and A.P.M. Wagelmans. A branch-
and-price algorithm for the multiperiod single-sourcing problem. Operations
Research, 51(6):922–939, 2003.

[39] A.P. French and J.M. Wilson. Heuristic solution methods for the multilevel
generalized assignment problem. Journal of Heuristics, 8:143–153, 2002.

[40] R.D. Galvão. A dual-bounded algorithm for the p-median problem. Opera-
tions Research, 28(5), 1979.

[41] M.R. Garey and D.S. Johnson. Computers and Intractability: a Guide to
the Theory of NP-Completeness. W.H. Freeman, New York, 1979.

[42] A.M. Geoffrion. Lagrangean relaxation for integer programming. Mathemat-
ical programming studies, 2:82–114, 1974.

[43] P.C. Gilmore and R.E. Gomory. A linear programming approach to the
cutting stock problem. Operations Research, 9:849–859, 1961.

[44] F. Glover, J. Hultz, and D. Klingman. Improved computer-based planning
techniques. part ii. Interfaces, 9(4):12–20, 1979.

[45] E. Gourdin, M. Labbé, and H. Yaman. Telecommunication in location, pages
275–305. Springer, Berlin, 2003.

[46] P. Hanjoul and D. Peeters. A comparison of two dual-based procedures for
solving the p-median problem. European Journal of Operational Research,
20:387–396, 1985.

[47] M. Held, P. Wolfe, and H.P. Crowder. Validation of subgradient optimiza-
tion. Mathematical Programming, 6:62–88, 1974.

[48] C. A. R. Hoare. Quicksort. Computer Journal, 5(1):10–15, 1962.

[49] K. Holmberg, M. Rönnqvist, and D. Yuan. An exact algorithm for the
capacitated facility location problems with single sourcing. European Journal
of Operational Research, 113:544–559, 1999.

[50] S. Jacobs. On genetic algorithms for the packing of polygons. European
Journal of Operations Research, 88:165–181, 1996.

BIBLIOGRAPHY 179

[51] E.L. Johnson, G.L. Nemhauser, and M.W.P. Savelsbergh. Progress in lin-
ear programming based branch-and-bound algorithms: An exposition. IN-
FORMS Journal on Computing, 12, 2000.

[52] K. Jörnsten and M. Näsberg. A new lagrangean relaxation approach to the
generalized assignment problem. European journal of Operational Research,
27:313–323, 1986.

[53] O. Kariv and S.L. Hakimi. Reducibility among combinatorial problems.
SIAM Journal of Applied Mathematics, 37:539–560, 1979.

[54] R.M. Karp. Reducibility among combinatorial problems, pages 85–103.
Plumunu Press, New York, 1972.

[55] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer
Verlag, 2005.

[56] C. Kenyon and E. Rémila. A near-optimal solution to a two-dimensional
cutting stock problem. Mathematics of Operations Research, 25:645–656,
2000.

[57] GNU Linear Programming Kit. Homepage
http://www.gnu.org/software/glpk/, Last accessed 15/09/2005.

[58] J.G. Klincewicz and H. Luss. A lagrangean relaxation heuristic for capaci-
tated facility location with single-source constraints. Journal of the Opera-
tional Research Society, 37(5):495–500, 1986.

[59] A. Klose and A. Drexl. Facility location models for distribution system
design. European Journal of Operational Research, 2004.

[60] A. Klose and S. Görtz. An exact column generation approach to the capac-
itated facility location problem, volume 544 of Lecture Notes in Economics
and Mathematical Systems. Springer, Berlin, 2004.

[61] M. Labbé, D. Peeters, and J.F. Thisse. Location on Networks, in Network
Routing, volume 8. Elsevier Science B.V., 1995.

[62] M. Labbé and H. Yaman. A note on the projection of polyhedra. Opti-
mization Online, 776, 2003. Optimization Online site : www.optimization-
online.org.

[63] M. Labbé and H. Yaman. Polyhedral analysis for concentrator location
problem. Optimization Online, 694, 2003. Optimization Online site :
www.optimization-online.org.

180 BIBLIOGRAPHY

[64] M. Laguna, J.P. Kelly, J.L. Gonzalez-Velarde, and F. Glover. Tabu search
for the multilevel generalized assignment problem. European Journal of Op-
erational Research, 82:176–189, 1995.

[65] A.H. Land and A.G. Doig. An automatic method for solving discrete pro-
gramming problems. Econometrica, 28:497–520, 1960.

[66] J.Y.T. Leung, M. Dror, and G. H. Young. A note on an open-end bin packing
problem. Journal of Scheduling, 4:201–207, 2001.

[67] A. Lodi, S. Martello, and M. Monaci. Two-dimensional packing problems:
a survey. European Journal of Operational Research, 141:241–252, 2002.

[68] A. Lodi, S. Martello, and D. Vigo. Models and bounds for two dimensional
packing problems. Journal of Combinatorial Optimization, 8:363 – 379, 2004.

[69] L. Lorena and E. Senne. A column generation approach to capacitated p-
median problems. Computers and Operations Research, 31(6):863–876, 2004.

[70] V. Maniezzo, A. Mingozzi, and R. Baldacci. A bionomic approach to the
capacitated p-median problem. Journal of Heuristics, 4:263–280, 1998.

[71] S. Martello, M. Monaci, and D. Vigo. An exact approach to the strip-packing
problem. INFORMS journal on computing, 15:310–319, 2003.

[72] S. Martello, D. Pisinger, and P.Toth. Dynamic programming and strong
bounds for the 0–1 knapsack problem. Management Science, 45(3):414–424,
1999.

[73] S. Martello and P. Toth. An algorithm for the generalized assignment prob-
lem, pages 589–603. 1981.

[74] S. Martello and P. Toth. Knapsack problems: Algorithms and Computer
Implementations. Wiley, New York, 1990.

[75] S. Martello and P. Toth. Knapsack problems: Algorithms and Computer
Implementations. Wiley, New York, 1990.

[76] R.K. Martin. Large scale linear and integer optimization. Kluwer academic,
1998.

[77] R.K. Martin. Large scale linear and integer optimization. Kluwer, 1999.

[78] J.M. Mulvey and P. Beck. Solving capacitated clustering problems. European
Journal of Operational Research, 18:339–348, 1984.

BIBLIOGRAPHY 181

[79] A.T. Murray and R.A. Gerrard. Capacitated service and regional constraints
in location-allocation modeling. Location Science, 5(2):103–118, 1997.

[80] S.C Narula, U.I. Ogbu, and H.M. Samuelsson. An algorithm for the p-median
problem. Operations Research, 25(4), 1977.

[81] R.M. Nauss. Solving the generalized assignment problem: An optimizing
and heuristic approach. INFORMS Journal on Computing, 15(3):249–266,
2003.

[82] A.W. Neebe and M.R. Rao. An algorithm for the fixed charge assign-
ing users to sources problem. Journal of the Operational Research Society,
34(11):1107–1113, 1983.

[83] G.L. Nemhauser and L.A. Wolsey. Integer and combinatorial optimization.
Wiley - Interscience, 1988.

[84] I.H. Osman and N. Christofides. Capacitated clustering problems by hybrid
simulated annealing and tabu search. International Transactions in Opera-
tional Research, 13:317–336, 1994.

[85] M.A. Osorio and M. Laguna. Logic cuts for multilevel generalized assignment
problems. European Journal of Operational Research, 151:238–246, 2003.

[86] H. Pirkul. Efficient algorithms for the capacitated concentrator location
problem. Computers and Operations Research, 14(3):197–208, 1987.

[87] D. Pisinger. A minimal algorithm for the multiple–choice knapsack problem.
European Journal of Operational Research, 83(2):392–410, 1995.

[88] D. Pisinger. A minimal algorithm for the 0–1 knapsack problem. Operations
Research, 45:758–767, 1997.

[89] D. Pisinger. Where are the hard knapsack problems? Computers and Oper-
ations Research, 32:2271–2284, 2005.

[90] K.E. Rosing. Towards the solutions of the (generalised) multi-weber problem.
Environment and Planning, Series B, 18:347–360, 1991.

[91] G.T. Ross and R.M. Soland. Modeling facility location problems as gener-
alized assignment problems. Management Science, 24(3), 1977.

[92] L.M. Rousseau, M. Gendreau, and D. Feillet. Interior point stabilization for
column generation. Technical report, Laboratoire Informatique d’Avignon,
2003. submitted to Operations Research Letters.

[93] T.J. Van Roy and D. Erlenkotter. Dual-based procedure for dynamic facility
location. Management Science, 28(10), 1982.

[94] T.J. Van Roy and D. Erlenkotter. A cross decomposition algorithm for
capacitated facility location. Operations Research, 34:145–163, 1986.

[95] M. Savelsbergh. A branch-and-price algorithm for the generalized assignment
problem. Operations Research, 45(6), 1997.

[96] E.L.F. Senne and L.A.N. Lorena. Stabilizing column generation using la-
grangean/surrogate relaxation: an application to p-median location prob-
lems. In Proceedings of the EURO 2001 conference, Erasmus University
Rotterdam, July 2001.

[97] E.L.F. Senne, L.A.N. Lorena, and M.A. Pereira. A branch-and-price ap-
proach to p-median location problems. Computers and Operations Rsearch,
32(6):1655–1664, 2005.

[98] M. Sigurd. Stabilizing column generation. In International Symposium on
Mathematical Programming, Copenhagen, August 2003.

[99] S.S. Syam. A model for the capacitated p-facility location problem in global
environments. Computers Ops Res., 24(11):1005–1016, 1997.

[100] F. Vanderbeck. Decomposition and Column Generation for Integer Program-
ming. PhD thesis, Université Catholique de Louvain, Louvain, Belgique,
1994.

[101] Xpress-Optimizer. Dash Optimization: Homepage
http://www.dashoptimization.com, Last accessed 15/09/2005.

[102] M. Yagiura, T. Yamaguchi, and T. Ibaraki. A variable depth search algo-
rithm with branching search for the generalized assignment problem. Opti-
mization methods and software, 10:419–441, 1998.

[103] J. Yang and J. Y.T. Leung. The ordered open-end bin-packing problem.
Operations Research, 51:759–770, 2003.

List of Figures

1.1 Partitioning problems: assignment (a), packing (b) and location (c) 2
1.2 Structure of the constraint matrix in a partitioning problem 4
1.3 Convexification of two set of constraints 5

2.1 Computing the µj upper bounds . 21
2.2 Pseudo-code of our optimization algorithm for the PKP 23

4.1 Computation of the combinatorial lower bound. 48
4.2 Pseudo-code of the OOEKP optimization algorithm 54
4.3 Computation of the Best-Fit Decreasing-Time heuristic. 55
4.4 Finding the best valid selection of overflow items 58

5.1 Tuning the algorithm parameters 88

8.1 Generation of new columns . 172

List of Tables

2.1 Summary of correlation types . 24
2.2 Computational results for CPLEX 8.1 and our algorithm: penalties-

weights correlation. 27
2.3 Computational results for CPLEX 8.1 and our algorithm: profits-

weights correlation . 28
2.4 Comparison of pricing algorithms at the root node for the 2LSPP . 29

3.1 Comparison of lower bounds . 41
3.2 Solving the 2LSPP to proven optimality 42

4.1 Comparison of dual bounds . 62
4.2 Comparison of primal bounds . 63
4.3 Solving the OOEBPP to proven optimality 64

5.1 Comparison between LP relaxation and LMP relaxation 87
5.2 Experimental results for the branch-and-price algorithm 89
5.3 Testing branch-and-price on large size instances 90
5.4 Comparison between CPLEX 6.5.3 and branch-and-price 91

6.1 Comparison between different lower bounds 107
6.2 Comparison between different multiple pricing methods 115
6.3 Branch-and-price with subgradient-based multiple pricing - Class α 116
6.4 Branch-and-price with subgradient-based multiple pricing - Class β 117
6.5 Branch-and-price with subgradient-based multiple pricing - Class γ 118
6.6 Branch-and-price with subgradient-based multiple pricing - Class δ 119
6.7 CPLEX 6.5 . 126
6.8 Branch-and-bound with Lagrangean relaxation 127
6.9 Comparison between BHMM and branch-and-price 128

7.1 Generation of regional constraints 152
7.2 Computational results on HOLM instances 157
7.3 Computational results on DIAZ instances 159

7.4 Computational results on SSCFLP instances, N = 50 161
7.5 Computational results on SSCFLP instances, N = 100 163
7.6 Computational results on CCLP instances, N = 50 165
7.7 Computational results on CCLP instances, N = 100 167

